[Question Bank]

LAB:

DIGITAL SYSTEM DESIGN

Code: ECE-354

Subject Teacher:

This booklet Includes:

- List of Equipments
- List of Softwares
- List of Experiments
- lab Manual
- Question Bank

ECE 354 DIGITAL SYSTEM DESIGN LAB

QUIZ QUESTIONS

CHAPTER- COMBINATIONAL CIRCUITS

1. Design a two bit magnitude comparator to compare equality.
2. Explain Arithmetic logic unit (ALU).
3. Design hexadecimal to binary encoder for 4- bits.
4. Design binary to decimal decoder for 4 - bits.
5. Design a 4- bit Binary to Grey code converter.
6. Design a 4-bit Gray code to Binary code convertor.
7. Explain in brief multiplication and division of unsignèd binary integers.
8. Design the 4×16 decoder with 2×4 decoder.
9. Implement half adder circuit using 4:1 MUX or multiplexers only.
10. Implement using 4:1 MUX.

11. Design full adder using logic gates.
12. Implement the Boolean function with three half adder circuit $\mathrm{F}=\mathrm{ABC}$.
13. Implement the following function using a 3 line to 8 line decoder

14. Implement the following Boolean function with a multiplexer
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{Em}(0,1,3,4,8,9,15)$
15. Design a combinational circuit which has four inputs and one output. The output is equal to 1 when:
16. All the inputs equal to 1 or
17. None of the inputs equal to 1
18. An odd number of inputs are equal to 1 .

Dept. of Electronics and Communicaton Engineering, Punjabi University, Patiala

Draw the logic circuit with minimum number of NAND gates.
16. Implement the following function using 4:1 MUX

$$
\mathrm{F}=\in \mathrm{m}(0,3,4,5,6,7)
$$

17. Implement the following logic function using 8:1 MUX

$$
\mathrm{F}=\in \mathrm{m}(0,1,2,3,4,10,11,14,15)
$$

18. Design and implement a 4-bit Gray code to binary code convertor using 4 to 16 decoder IC.
19. Draw the logic circuit for the following expression

$$
\mathrm{F}=\overline{\mathrm{A}} \mathrm{~B}+\overline{\mathrm{A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}
$$

20. Draw the logic circuit for the following expression

$$
F=\bar{x} \bar{y} z+\bar{x} y z+x \bar{y}
$$

21. Implement the following function using 3 to 8 decoder $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\operatorname{\epsilon m}(0,1,3,4,5,7)$
22. Implement the Boolean function with three half-adder circuit

$$
F=A^{\prime} B C+A B^{\prime} C
$$

23. Draw the gate implementation of the simple fixed Boolean function. $F(A, B, C)=A^{\prime} C+A^{\prime} A+A B^{\prime} C+B C$ using $A N D$ and $O R$ gates.
24. Design 4:1 MUX.
25. Design 8:1 MUX by using two 4:1 MUX.
26. Design a comparator circuit which compares two 2 - bit numbers. It has three outputs $A>$ $B, A<B$ and $A=B$. Also show that $A<B=\overline{A>B} \cdot \overline{A=B}$.
27. Design a combinational circuit with 3 inputs and 1 output. The output is high only when more than one input is high.
28. Design a circuit that generate an even parity bit for 4 - bit input and implement it using only NAND gates.
29. Design a BCD TO Gray Code Convertor.
30. Implement the following function using $8 * 1$ and $16 * 1$ multiplexer.

$$
\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d})=\in \mathrm{m}(0,1,2,3,4,5,8,9,10,11,15)
$$

31. Design full subtractor using one 3:8 decoder.

CHAPTER- SEQUENTIAL CIRCUITS

32. Design the following sequence generator using D flip- flop.
33. Draw the output waveforms for the following input signals (CLK, S and R).
34. Draw the waveform at output $(\overline{\mathrm{Q})}$ for 5 clock pulses, Assume $\mathrm{Q}=1$ as initial condition for the given circuit;

CHAPTER- COUNTERS AND REGISTERS

38. Design MOD-5 asynchronous counter (or ripple counter).
39. Design MOD-5 asynchronous counter using JK flip flop and a NAND gate.
40. Design JK counter that goes through states $0,2,3,5,6$ only.
41. Design a J-K flip flop counter that goes through the states $1,3,5,7,1,3 \ldots$. . Is the counter self-correcting?
42. Design an up- down 3-bit synchronous counter using JK flip flop to count the following sequence $0,2,3,6,4,0$.
43. Design a synchronous $\mathrm{J}-\mathrm{K}$ counter that goes through states $1,2,4,7,1,2, \ldots \ldots$.
44. Design a synchronous J - K counter that goes through the following states $1,3,4,5,7,1,3$, हित्रान दौधारी
45. Design a synchronous JK counter that goes through the following states $2,4,7,2,4 \ldots .$. . Is the counter self starting?
46. Design a synchronous JK counter that goes through the states- $1,2,3,6$.
47. Design a counter using T flip flop to count the following state diagram states.
48. Design a Up- down synchronous counter ūing D flip flop to count the following sequence:

49. Design a forward synchronous counter using T flip flop that goes through the following states:
$2,4,5,6,7,2,4$, \qquad
50. Design J-K counter that goes through states: $0,3,5,0$.
51. Designing a synchronous counter using J-K flip- flops to count the following sequence: 1 , 3, 5, 7, 1 \qquad
52. Design a synchronous counter using T flip flops going through the following states only:

$$
0,4,6,7,9,13,15
$$

54. Design a synchronous 4-bit binary counter using T flip-flops.
55. Design a 4- bit synchronous counter using D flip flops to count the following sequence:

$$
0 \rightarrow 3 \rightarrow 7 \rightarrow 5 \rightarrow 4 \rightarrow 13 \rightarrow 0
$$

56. Design a synchronous counter using D flip flops to count the following states

$$
1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 11 \rightarrow 13 \rightarrow 1
$$

57. Design a 4- bit synchronous counter using JK flip flops to count the following states: $0,3,5,9,11,14$.
58. Design a 4- bit counter using D flip flop to count the following state diagram states

59. Design a synchronous counter to count the states of following state table

60. Design a synchronous J - flip flop counter to count the following states $2,3,8,12,15$,

61. Design a 5-bit synchronous counter using D flip- flops to count the following states $0,2,6,8,12,16,22,28$
62. Design a synchronous counter using T flip flops that counts the states as shown in state diagram

63. Design an up down counter using D flip flops to count $0,3,2,6,4,0, \ldots$.
64. What is the basic difference between a counter and a shift register?
65. Design and draw the circuit of shift register to generate the following wave train ….1101011......... $\%$ हिПन्या हाधाबी
66. Design a T-flip flop counter that goes through the states $2,4,5,6,7,2,4 \ldots \ldots$ is the counter self correcting.
67. Design a synchronous decade counter to count in the following sequence $1,0,2,3,4,8,7$,

6,5 .
68. Design a mod 30 synchronous up counter.
69. Design an up- down counter using JK flip flop to count 0, 2, 3, 6, 4, 0.
70. Design 3- bit Binary counter using T flip flop. ©l|
71. Design MOD-5 Up- down counter using RD flip flops.
72. Design a MOD 6 counter using T- flip flop.
73. Design a three bit, MOD6, unit distance up- down counter.
74. Design mode- 8 synchronous counter using T flip flops.
75. Explain two applications of Shift Register as counters.

CHAPTER- SEQUENTIAL CIRCUITS

76. Determine the reduced state table for the following state table.

Present State	Next States		Output	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
1	1	2	0	0
2	2	3	0	1
3	3	4	1	1
4	2	2	0	0
5	5	2	1	0

77. Derive the state table and state diagram of following sequential circuit

78. A sequential circuit has two JK flip flop A and B, two inputs X and Y and one output Z . The flip- flop input equations and output functions are as follows:

$$
\mathrm{J}_{\mathrm{A}}=\mathrm{BX}+\overline{\mathrm{B}} \overline{\mathrm{Y}}, \mathrm{~K}_{\mathrm{A}}=\overline{\mathrm{B}} \mathrm{X} \overline{\mathrm{Y}}, \mathrm{Z}=\mathrm{AXY}+\mathrm{B} \overline{\mathrm{X}}, \mathrm{~J}_{\mathrm{B}}=\overline{\mathrm{A}} \mathrm{X} \text { and } \mathrm{K}_{\mathrm{B}}=\mathrm{A}+\mathrm{X} \overline{\mathrm{Y}}
$$

79. Derive the sequential circuit with two D flip flops A and B and one input x .
a. When $x=1$, the state of the circuit remains same.
b. When $\mathrm{x}=0$, then circuit through the state transitions from 00 to 01 to 11 to 10 and back to 00 and repeats.
80. Reduce the following state diagram and design a circuit using D flip flop when ($\mathrm{a}=001$, $\mathrm{b}=010, \mathrm{c}=011, \mathrm{~d}=100, \mathrm{e}=101$).

81. Design with D flip flop and JK flip flop the clocked sequential circuit whose state diagram

82. Design a clocked sequential machine using JK flip flops for the state diagram shown below. Use state reduction if possible. Make proper state assignment.

83. Design a clocked sequential machine using T flip flops for the following state diagram.

Use state reduction if possible. Also use straight binary state assignment.

86. Design the sequence detector for the given state diagram using T flip flops.

