
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Introduction

• Among the vast applications of the computer, the major

application is to manage and process large amounts of

data.

• The knowledge about representing data is the fundamental

to study of Computer Science.

• The primary objective behind computer programming

should be to do the calculations efficiently and to store data

and retrieve data in an optimistic way.

• Some structures need to be devised to store, organize, and

search through data.

• Thus, the study of structuring the data (hence data

structures) and algorithms that manipulate data is the heart

of Computer Science.

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Data and Information

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

• The term data has been derived from the word datum (means that is

given). Data is plural of datum. The term data refers to the value or

simply set of values that are raw and unorganized. Data may be simple,

random, and useless until it is organized (so called processed). Data is

valuable raw material which can be in different forms such as numbers,

words, alphabets, etc.

• When data is processed i.e. organized, structured, and presented in a

meaningful context so that it becomes useful for decision making and

understanding, it becomes information. In layman language, data and

information are interchangeable terms, but technically, no conclusion can

be drawn from data. Information play vital role in decision making which

is obtained from data. So, indirectly data is an important entity for

decision making.

Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

 A data structure is a way of storing

the data in computer’s memory so that it

can be used efficiently.

 Formally, a data structure is a

logical/mathematical model of

organization of data. The choice of data

structure begins with the choice of an

Abstract Data Type (ADT) such as array.

Classification of data structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Data structures can be classified in several ways.

These classifications are:

Linear and Non-Linear Data Structures

Static and Dynamic Data Structures

Homogeneous and Non-

Homogeneous Data Structures

Linear and Non-Linear Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Linear Data Structure: The elements in a linear data

structure form a linear sequence.

Example of the linear data structures are: Arrays, Linked list,

Queue, Stack etc.

Non-Linear Data Structure: The elements in a non linear

data structure do not form any linear sequence.

For example, Trees and Graphs.

Static and Dynamic Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Static Data Structure: Static data structures are those whose
memory occupation is fixed. The memory taken by these data
structures can not be increased or decreased at run time.
Example of the static data structure is an Array. The size of an
array is declared at the compile time and this size cannot be
changed during the run time.

Dynamic Data Structure: Dynamic data structures are those
whose memory occupation is not fixed. The memory taken by
these data structures can be increased or decreased at run time.
Example of the dynamic data structure is Linked List. The size of
linked list can be changed during the run time.

Other data structures like stack, queue, tree, and graph can be
static or dynamic depending on, whether these are implemented
using an array or a linked list.

Homogeneous and Non-Homogeneous
Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Homogeneous Data Structure: Homogeneous data structures
are those in which data of same type can be stored.
Example of the homogeneous data structure is an Array.

Non-Homogeneous Data Structure: Non-Homogeneous data
structures are those in which data of different types can be
stored.
Example of the non-homogeneous data structure is linked list.

Other data structures like stack, queue, tree, and graph can be
homogeneous or non-homogeneous depending on, whether
these are implemented using an array or a linked list
respectively.

A Note

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

There are two ways of storing linear data
structures into the computer’s memory.

In the first way, the linear relationship between the
elements of the structure is represented by
sequential memory locations. For example,
arrays, as elements of an array are stored in
continuous/adjacent memory locations.

In second way, the linear relationship between the
elements of the structure is given by using
pointers (addresses) e.g. Linked List.

Concept of Data Types

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

A data type can be defined as set of values and set
of operations which are permissible on those
values.

For example, an integer data type in ‘C’ language
can have range of values [-32768 to 32767] and
set of operations etc.

Data Types can be classified into two broad
categories:
 Primitive Data Types
 Abstract Data Types

Primitive Data Types

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Primitive data types are also known as

predefined or basic data types. These data

types may be different for different

languages.

For example, in ‘C’ language, the primitive

data types for storing the integer values are

int, long, short and for storing the real values

are float, double and long double.

Abstract Data Types (1)

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

To understand the notion Abstract Data Type (ADT),
it is necessary to understand the concept of
Abstract and Data Type separately.

The term Abstract here stands for considering apart
from the detailed specification or implementation.

Abstraction refers to the act of representing the
essential features without including the details.

Data type as mentioned earlier is the set of values
and set of operations that are permissible on those
values.

Abstract Data Types (2)

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Abstract Data Types uses the following principles:

Encapsulation: Providing the data and operations on the

data in a single unit.

Abstraction: Hiding the details of implementation e.g. a

class in C++ or in Java Language exhibits what it does

through its methods but the detail of how methods work is

hidden from the user.

The examples of abstract data types are stack, queue,

tree etc. The Stack is an abstract data type as two

operations push and pop are performed on the stack without

knowing the detail of whether stack is implemented using an

array or a linked list.

Data Structure Vs File Organization

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

 The file organization is the study of storing the data

records into the files. There are various file organization

techniques like sequential, random, and indexed sequential

file organization. These organization techniques differ in

record sequencing and retrieval methods used.

 Conceptually, a data structure and a file organization are

same but differ in the following aspects:

 In Implementation

 In Access Methods

 Data structure are thought of as in main memory (RAM)

and file organization as in auxiliary storage (tapes, disks)

Short Descriptions of various Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Array:

 It is the linear collection of finite number of homogeneous data

elements.

 If we consider an array with elements then elements of the array will

be referred using index set consisting of consecutive numbers i.e. The

elements of an array can be referred by using different notations:

 When array is stored into the computer’s memory, its elements

occupies the consecutive memory locations.

 The total number of elements in an array is known as the size of that a

array and can be calculated by using a simple formula:

 Where is the lower index of the array and is the upper index of the

array.

 Programming languages also support multidimensional arrays.

Short Descriptions of various Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Linked List :

 A linked list refers to the linear collection of data elements in

which linear order is not given by their physical placement in
memory (as in case of array).
 In linked list, the data elements are managed by collection of
nodes, where each node contains link or pointer which points to
the next node in the list.
 The beginning of the linked list is maintained by a special
pointer variable which contains the address of the first node in
the list.
 The link part of the last node contains a special value called
Null, which shows the end of the list.

Short Descriptions of various Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Stacks:

 Stack which is also popular with the name LIFO list (Last

In First Out) is a linear collection of data elements in which

insertion and deletion are restricted at only one end known

as top.

 Every new item is inserted at the top of the stack and

only item at the top can be removed from the stack.

Consider an example of stack of dish plates in which clean

plates are added at the top of the stack. Plates are also

removed from the top of the stack. The first plate put on the

stack is the last plate to be removed from the stack.

 A stack is linear data structure in which elements are

removed in reverse order of that in which these elements

were inserted into the stack. Although stack is a restricted

kind of data structure but it has many applications in the

programming.

Push Pop

Short Descriptions of various Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Queue:

 Queue which is popularly known as FIFO (First In First Out)
list, is linear collection of data elements in which insertion can
take place at one end and deletion can take place at the other
end.
 The end at which insertion is allowed is called rear of the
queue and the end at which deletion takes place is called front of
the queue.
 Queue operates just like the queues of real life, for example, in
a queue of people standing at the ticket counter every new
person joins the queue by standing at the rear of the queue and
the person at the front of the queue is the first who leaves the
queue after taking the ticket.

Short Descriptions of various Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Tree:

 Tree is a non-linear kind of data structure which is used to
represent data elements having hierarchical relationship between
them.
 Tree structure is also referred as parent child relationship. The
basic difference between linear and non linear data structures is that
in linear data structures, for each element there is a fixed next
element but in case of non-linear data structure each element can
have many different next elements.
 A very common example is the ancestor tree as shown in figure.
This tree shows the ancestors of Lata. Her parents are Lakshmi and
Piyara Singh. Lakshmi’s parents are Shanti and Suresh Kumar.
Piyara Singh’s parents are Kalyani and Sunder Singh and so on.

Short Descriptions of various Data Structures

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Graphs:

 Graph is a non-linear kind of data structure which is used to
represent data having relationship among its elements which are not
necessarily hierarchical in nature. For example, a graph can be used
to represent the road map of a state in which various cities are
connected with each other by different roads.

 A Graph can be defined as collection of nodes and edges, where
edges connect various pairs of nodes. In our example of road map,
cities (Amritsar, Jalandhar, Ludiana, Chandigarh, Pathankot)
represents the nodes whereas roads represents the edges.

Operations on Data Structures (1)

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Insertion: Adding a new data element into the data

structure is known as insertion.

Deletion: Removing a data element from the data structure

is known as deletion.

Traversing: Accessing each data element exactly once in

order to process it is known as traversing.

Searching: Finding the position of any given data element

in the data structure is known as searching.

Operations on Data Structures (2)

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Besides these basic operations there are some other

operations which are less frequently performed on some

data structures. These operations are:

Combining two or more lists into a single list. This operation

is popularly known as merging.

Splitting a list into two or more lists.

Copying and concatenation of lists.

Sorting the data elements of a list in ascending/descending

order.

Algorithm

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

The computer is a manmade machine which does not have any decision

making capabilities. It only follows the instructions given by its user.
Instructions given to the computer to solve a particular problem are known

as algorithm.
An algorithm can be defined as finite collection of well defined steps

designed to solve a particular problem. An algorithm must have following
characteristics:

Input: An algorithm must take some inputs that are required for the
solution of problem in question.

Process: An algorithm must perform certain operations on the input data
which are necessary for the solution of the problem.

Output: An algorithm should produce certain output after processing the
inputs.

Finiteness: An algorithm must terminate after executing certain finite
number of steps.

Effectiveness: Every step of an algorithm should play a role in the
solution to the problem. Also, each step must be unambiguous, feasible

and definite.

Importance of Algorithm Analysis

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

There are two basic requirements to solve any
particular problem.

•Data
•Instructions to manipulate data i.e. algorithm

The choice of an algorithm is of great
importance, which can be made by considering
the following factors:

•Programming requirements of an algorithm
•Time requirement of an algorithm
•Space requirement of an algorithm

Programming Requirements of an Algorithm

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

An algorithm must use the features supported by
the programming language in which it is to be
implemented.
If we have designed an algorithm that is optimal but
does not support the programming language
features then it is of no use as compared to other
one which may be not be optimal but supports the
programming language features.
As the algorithm is of no use if it cannot be
programmed and executed. Therefore, an
algorithm must satisfy the programming features of
the language.

Space Requirements of an Algorithm

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

To execute any program, space is needed for
various reasons:

Space required by data: This includes space
required to store variables and constants which are
fixed. Sometimes space is allocated dynamically
(i.e. at the runtime) and this space is not fixed.

Space required by instructions: This is the space
required to store the instruction sets. This space
remains unchanged as the instructions of the
program do not change during run time.

Time Requirements of an Algorithm

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Each algorithm takes some amount of time to execute. The study
for the time requirements of an algorithm is important for various
reasons:
Sometimes it is necessary to know in advance, the time
required to execute the program to see whether it is within the
acceptable limits or not.
There can be several different solutions for a particular problem
each with different time requirement, so that one can choose the
most optimal solution.
It is not very easy to calculate the exact time requirements for
any algorithm as it depends upon various factors like machine on
which algorithm is to be executed, algorithm itself
and input size of the algorithm.
Because the processor speed in different machines may be
different so, we mainly concentrate to estimate the execution time
of an algorithm irrespective to the processor/machine.

Complexity of an algorithm

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Complexity is the time and space requirement of the algorithm.

If time and space requirement of the algorithm is more, then complexity

of the algorithm is more and if time and space requirement of the

algorithm in less, complexity of that algorithm is less.

Out of the two factors time and space, the space requirement of the

algorithm is not a very important factor because it is available at very

low cost.

Only the time requirement of the algorithm is considered an important

factor to find the complexity. Because of the importance of time in

finding the complexity, it is sometimes termed as time complexity.

As the time requirement of the algorithm is dependent upon the input

size irrespective of the other factors like machine/processor, time

complexity is measured in terms of input size n. If the input size to the

algorithm is more, the complexity will be more and if the input size to the

algorithm is less, the complexity will be less.

Complexity of an algorithm

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

For example, consider an algorithm which sorts an array of

size 2000, will definitely take more time than to sort an array

of size 20. Thus, we express the time complexity in terms of

input size n.

Hence, to calculate the time complexity of an algorithm, the

basic approach is to count the number of times, a key

operation is executed. Here, the key operation is the major

operation that is executed maximum number of times in the

algorithm. For example, in a searching algorithm the key

operation is comparison between the elements. We only

count the key operation because most of the time taken by

the algorithm is consumed by key operation. The time

complexity is expressed as a function of key operation

performed in that algorithm.

Complexity of an algorithm

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

As the complexity of an algorithm is dependent upon the input size, still

complexity can be divided into three types:

• Worst case complexity

• Best case complexity

• Average case complexity

For a particular input, the result can be obtained in minimum time or

maximum time or average time. For instance, consider the linear search

in which we find the desired element by comparing it with all the

elements of the list (say n number of elements in the list) starting from

the first element of the list.

If we get the desired element at first position then number of

comparisons will be 1. So complexity is 1. If we get the desired element

at the last position then number of comparisons will be n so complexity

is n.

If we get the desired element at any other position then the complexity

will be between 1 and n. So, the complexity can be different (maximum,

minimum, or average) for a particular problem.

Complexity of an algorithm
Types of Complexities

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Worst Case Complexity: If the running time of the algorithm is longest for

all the inputs then the complexity is called worst case complexity. In this

type of complexity, the key operation is executed maximum number of

times. Worst case is the upper bound of complexity and in certain

application domains e.g. air traffic control, medical surgery, the worst case

complexity is of crucial/high importance.

Best Case Complexity: If the running time of the algorithm is shortest for

all the inputs then the complexity is called best case complexity. In this

type of complexity, the key operation is executed minimum number of

times.

Average Case Complexity: If the running time of the algorithm falls

between the worst case and the best case then the complexity is called

average case complexity. Average case complexity of an algorithm is

difficult to find. To calculate the average case complexity of an algorithm

we have to take some assumptions.

Asymptotic Analysis and Notations

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Complexity can be defined as the rate at which the storage or time

requirement grows as a function of the problem size.
The absolute growth depends on the machine used to execute the program,

the compiler used to construct the program, and many other factors.
We would like to have a way of describing the inherent complexity of a

program (or piece of a program), independent of machine/compiler
considerations.

This means that we must not try to describe the absolute time or storage
needed. We must instead concentrate on a proportionality approach,

expressing the complexity in terms of its relationship to some known function.
The type of analysis known as asymptotic analysis is used to simplify the

analysis of running time by removing the details which may be affected by
hardware or compilers used.

For example, the number 999999 can be read as 1000000 or the number
10000001 can be read as 10000000.

Also as the constant 4 is dependent upon the compiler, hardware, and many
other factors.

Asymptotic Analysis and Notations

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

To measure the increase in running time of algorithm with the increase

in size of input.

Asymptotically, more efficient algorithms are best for all but small input.

To measure the complexity of an algorithm, various asymptotic notations

can be used such as,

 Big O Notation
 Big Omega(Ω) Notation
 Big Theta(θ) Notation
 Little Omega Notation
 Little Theta Notation

All the above notations are used to express the complexity of the

algorithm.

Big O Notation

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Big O notation is upper bound asymptotic notation.

This means, a function f(x) is Big O of function g(x) and

there exists the positive constants c and no such that

Here, and are the functions of non negative integers.

c. g (n)≥ f(n) for all n ≥nₒ

Here, f(x) and g(x) are the functions of non negative

integers.

Complexity is O(g(n).

Big O Notation - Examples

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

f(n) = 2n +6, g(n) = n

Taking constants c= 4, and no= 3,

f(n) ≤ c.g(n) where n ≥ no

Complexity is O(g(n) = n.

In general, Big O notation drops all the constant and lower order terms.

Big Omega Notation

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Big Omega is asymptotically lower bound notation. This

means a function f(x) is Big Omega of function g(x) and

there exists two positive constants c and no such that

Big Omega is used to express the best case running time or the lower

bounds of the algorithmic problems. The function g(n) is only a lower

bound on f(n).

Big Omega Notation - Examples

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

3n +2 is Ω(n) as 3n+2 ≥3n for all n ≥ 11

100n+7 is Ω(n) as 10n+7 ≥ 100n for all n ≥ 1

Big Theta Notation

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Big Theta is asymptotically a tight bound notation. This

means a function f(x) is Big Theta of function g(x) and there

exists three positive constants c1, c2 , and no such that

It may be noted that f(n) = ᵠ(g(n)) iff

F(n) = O(g(n) and

F(n) = Ὠ(g(n))

Little O Notation

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

A function f(x) is little O Notation of function g(x) and for

every c there exists no such that

Little o is usually used to compare running times of the

algorithms. If f(n) = o(g(n)) then it can be said that g(n)

dominates f(n).

Little omega () Notation

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

A function f(x) is little omega of function g(x) and for every c

there exists no such that

Rate of Growth of Complexity with Input Size

It is the Rate at which the complexity increases when the input size is

increased.

Rate of Growth of Complexity with Input Size
Continued….

Time Space Trade-Off among Algorithms

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

The complexity of an algorithm can be defined as the function which gives the time and

space requirements of an algorithm in terms of input size.

The best algorithm for a particular problem is that which requires minimum time to

execute it by taking the minimum amount of space into the memory. But, practically both

these objectives are not possible to achieve simultaneously.

As mentioned earlier, there may be various different solutions for a particular problem.

One such solution may require more time but less space and another may require less

time but more space. Therefore, we choose an algorithm according to our requirements

and constraints. If we have time constraint i.e. we want to execute the program in less

time then we have to choose an algorithm which takes less time but it may take more

space. For example, in the real life applications we need to choose an algorithm that

takes less time for its execution. On the other hand, if we have space constraint then we

have to choose an algorithm which takes less space but it may take more execution

time.

We have to choose from the two options, one with less time but more space another

with more time but less space. This is what is popularly known as Time-Space tradeoff

among algorithms.

Because of advancement in hardware technology and decreased cost of

hardware, space is no longer a constraint. So, we can opt for algorithms with less
execution time at the cost of storage space.

Time Space Trade-Off among Algorithms

Tradeoff : Situation that involves losing one quality or aspect of something in

return for gaining another quality or aspect.

Time and space requirements of algorithm can not be minimized and hence

time-space tradeoff.

Situation 1 Situation 2

Time ↑ ↓

Space ↓ ↑

