
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Department of Computer Science, Punjabi University Patiala

BINARY TREE

2

CONTENTS
• Introduction

• Tree

• Binary Tree

oProperties of binary tree.

oMemory representation of binary tree.

oOperations performed on binary tree.

3

INTRODUCTION

TREE

Tree is a finite non-empty set of elements

in which first element is called Root and

remaining elements are partitioned into a

number of disjoint subsets each of which

is itself a tree. Each element in a tree is

called Node.

4

GENERAL REPRESENTATION OF

TREE
In tree, A is root node

and remaining elements

are nodes. The subset to

the left of the root node is

called Left subtree and

node to the right of the root

is called Right subtree.

The elements of the tree

have the parent -

child relationship.

B C

GE FD

A

CONTINUED….

ROOT

The root of a tree is the origin of the tree form

where the tree origins or starts . Node A is the root of

the tree.

EDGE

A line which connect a parent node to its

child node is called Edge or Branch.

ROOT

6

CB

A

EDGE

CB

A

CONTINUED….

• SUCCESSOR

Left and right subtree of tree are called as

successors or child of a node. A is having two

successors as B and C.

• TERMINAL NODE

A node is called as terminal node if it has no

children.

7

A

B C

D E F

CB

A

• PARENT NODE

Node A is said to be

parent of B and C.

Similarly B is the parent

of D and E.

• SIBLINGS

The nodes which are

having same parent are

known as siblings. B and

C are the siblings as they

are children of same

parent node A.
8

A

B

D

C

E G

H I J

F

TREE TERMINOLOGIES
• PATH

A path between any two nodes

in tree is a sequence of nodes in

which successive nodes are

connected by edges.

LENGTH

The length of a path in a tree is

total number of edges which

come across that path.

Path from A to D

A  B  D

Path from A to E

A  B  E

Path from A to F

A  C  F

Length of Path A to B:1

Length of Path A to C:1

Length of Path A to D:2

Length of Path A to E:2

Length of Path A to F:2

A

B C

D E F

9

CONTINUED…

• HEIGHT

The height of any node in the tree is length of the

longest path from that node to a terminal node . The

height of the root is treated as the height of tree.

Height of A:3

Height of B:2

Height of C:2

Height of D:1

Height of E:1

Height of F:1

Height of G:0

Height of H:0

Height of I:0

Height of J:0

A

B

D

C

E F

G IH J
10

CONTINUED….

• DEGREE

The degree of node can be defined as number of

child nodes it has. A leaf node always has degree

zero.

• LEVEL

The level of node is the length or path from the

root. The root node of the tree has level 0,and the

level of any node in the tree is one more than the

level of its father.

Degree of A =

2

Degree of B

= 2

Degree of C

= 1

Degree of D

= 0

Degree of E =

0

Degree of F =

0

A

B C

D E F

11

LEVELS OF NODES IN A TREE

LEVEL 0

LEVEL

2

LEVEL 1

LEVEL 3

A

CB D

G H I J KE F

NML O S TP Q R

12

BINARY TREE

A binary tree can be defined as a finite collection of

nodes where each node n is having the property that

it can have 0,1 or 2 children.

B C

GE FD

A

IH KJ

13

CONTINUED….

• A binary tree can be defined as a finite collection of

nodes where each node n is having the property that it

can have 0,1 or 2 children.

• A binary tree may be empty known as NULL tree or it

contains a special node called root of the tree and

remaining nodes in the tree form the left right binary

sub trees.

14

TYPES OF BINARY TREE

• Similar Binary Trees

• Equivalent Binary Trees

• Complete Binary Trees

• Strictly Binary Trees

14

SIMILAR BINARY TREE

Two binary tree are called similar if both are having

similar structure but the elements in both the tree

can be different.

F 7

654

32

1

FED

CB

A

16

EQUIVALENT BINARY TREE

Two binary trees are said to be equivalent or copies

if they are similar & are having the same contents in

their respective nodes.

G

FED

CB

A

G

FED

CB

A

17

COMPLETE BINARY TREE

A binary tree is said to be complete if it contains the

maximum number of nodes at each level except the

last level.

DC

B

A

HG JI

FE

C

K L NM
18

STRICTLY BINARY TREE

A binary tree is called Strictly binary tree if all

non leaf nodes of tree contains exactly two

children. Every non leaf node of the binary tree

contains left right subtree.

ED

B

A

IH

GF

C

KJ 19

PROPERTIES OF BINARY TREE

• A Binary Tree with n nodes has exactly n-1 edges.

• In a binary tree every node except the root node has

exactly one parent.

• In a binary tree there is exactly one path connecting

any two nodes in the tree.

• The minimum number of nodes in a binary tree of

height h is h+1.

20

CONTINUED….

• The maximum number of nodes in a binary tree of

height h is

2(h+1)−1.

• Number of leaf nodes in a complete binary tree is

(n+1)/2.

• In a complete binary tree,

Number of external nodes = Number of internal

nodes+1.

21

MEMORY REPRESENTATION OF

BINARY TREE

A binary tree can be represented into computer

memory

using two ways:-

1) Linked Representation

2) Sequential Representation

22

Linked Representation Of Binary Tree
Each element of tree is represented by a node having three

parts.

• 1st Part (Info)- Which stores the element.

• 2nd Part (left)- Stores the address of left child node.

• 3rd Part (Right)- Stores the address of right child node.

A

C

NUL

L

D NUL

L

NUL

L

E NUL

L

B

NUL

L

F NUL

L

NULL G NUL

L

B C

GE FD

A

23

SEQUENTIAL

REPRESENTATION

• Root of tree is always stored at the 1st array index &

its left and right child will be stored at 2nd and 3rd

index respectively.

• If a node occupies the Kth index of array then its:-

o Left child will be stored at (2 × k)th array index.

o Right child will be stored at (2 × (k + 1))th array index.

• Sequential representation of binary tree of height h

will require an array size 2(h+1) - 1

24

CONTINUED…

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

-

A

B
-

C

-

-
-
D

E

-

E
F
G
H
I

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

A
B
C
D

D

C

B

A

E

IH

GED

CB

A

F

25

OPERATIONS PERFORMED ON BINARY

TREES

Various operations performed on Binary Tree

are:

1) Traversing.

2) Finding the number of external and

internal nodes.

26

TRAVERSING BINARY TREE

• Traversing is the process of visiting each node in the tree.

• There are standard methods for traversal of Binary Tree:

oPre-Order Traversal.

o In-Order Traversal.

oPost-Order Traversal.

• While traversing, three main activities take place:

oVisiting the Root.

oTraversing the left subtree.

oTraversing the right subtree.

27

PRE ORDER TRAVERSAL

• This is also known as depth-first order or Root-

Left-Right traversal.

• In this method, traversal order followed is:

oVisit the root.

oTraverse the left sub tree .

oTraverse the right sub tree

28

PRE ORDER TRAVERSAL

29

B C

FD E

A

G

Nodes are visited in preorder as: A DB EC GF

ALGORITHM

Traverse Binary Tree In Pre Order Manner.

Step1: If Root=Null Then

Print ”Tree is Empty”

Exit

Else

Set Pointer=Root

[End If]

Step2: Initialize an empty Stack by pushing Null

into it and setting the Stack variable Top to 1

Step3: Repeat While Pointer ≠ Null

Print Pointer→ Info

If Pointer→ Right ≠ Null Then
30

CONTINUED….

Push Pointer  Right onto the Stack by

incrementing stack’s variable Top.

If Pointer  Left ≠ Null Then

Set Pointer=Pointer  Left

Else

Set Pointer=Stack  Top

Decrement the Stack’s variable Top

by 1

[End If]

[End Loop]

Step4: Exit 31

IN ORDER TRAVERSAL

• This is also known as symmetric order or Left-

Root-Right traversal.

• In this method, traversal order followed is:

o Traverse the left subtree.

o Visit the root.

o Traverse the right subtree .

32

IN ORDER TRAVERSAL

33

B C

FD E

A

G

The nodes are visited in order as : B AD CE G F

ALGORITHM

Traverse Binary Tree In In Order Manner.

Step1: If Root=Null Then

Print ”Tree is empty”

Exit

Else

Set Pointer=Root

[End If]

Step2: Initialize an empty Stack by pushing Null
into it and setting the Stack variable Top to 1

Step3: Set Flag=True
34

CONTINUED…

Step 4: Repeat Steps 5 to 10 while Flag = True

Step 5: Repeat while Pointer ≠ Null

Push Pointer onto the stack and

Increment the stack variable

Top by 1

Set Pointer = Pointer  Left

[End Loop]

Step 6: Set Pointer = Stack  Top

Step 7: Decrement the stack variable Top by 1

Step 8: Set Flag= False

Step 9: Repeat while Pointer ≠ Null and Flag =

False
35

Continued…

Set Pointer = Pointer  Right

Set Flag = True

Else

Pointer=Stack  Top

decrement the stack variable Top by 1

[End If]

[End Loop]

Step 10: If Pointer = Null Then

Set Flag = False

[End If]

[End Loop]

Step11: Exit
36

POST ORDER TRAVERSAL
• This is also known as Left-Right-Root traversal.

• In this method, traversal order followed is:

o Traverse the left subtree in Post-order traversal.

o Traverse the right subtree in Post-order traversal.

o Visit the root.

37

POST ORDER

TRAVERSAL

38

B C

FD E

A

G

The nodes are visited in Post Order as : D B E G F C A

ALGORITHM

Traverse Binary Tree In In Order Manner.

Step1: If Root=Null Then

Print ”Tree is empty”

Exit

Else

Set Pointer=Root

[End If]

Step2: Initialize an empty stack by pushing Null into

it and setting the stack variable Top to 1

Step 3: Set Flag=True
39

CONTINUED….

Step 4: Repeat Steps 5 to 10 while Flag = True

Step 5: Repeat while Pointer ≠ Null

Push Pointer onto the Stack and

Increment the stack variable Top by 1

Set Pointer = Pointer  Left

[End Loop]

Step 6: Set Pointer = Stack  Top

Step 7: Decrement the stack variable Top by 1

Step 8: Set Flag = False

40

CONTINUED….

Step 9: Repeat while Pointer ≠ Null and Flag =

False

If Pointer > 0 Then

Print: Pointer  Info

Set Pointer = Stack  Top

decrement the stack variable Top

by 1

Else

Set Pointer = Pointer

Set Flag = True

[End If]
41

CONTINUED….

Step 10: If Pointer = Null Then

Set Flag = False

[End If]

[End Loop]

Step 11: Exit

42

TRAVERSING USING

RECURSION
• We can also do traversing using recursive in binary

tree.

• In recursion every node is traversed and creates a

copy of every call just as factorial program through

recursion.

• There are standard methods for the traversal of

Binary Tree through recursion, these are:

oPre-Order Traversal

oIn-Order Traversal

oPost-Order Traversal
43

PRE ORDER TRAVERSAL

B C

FD E

A

G

B C

FD E

A

G

44

The nodes are visited in Pre Order as: A DB EC GF

ALGORITHM

Traversing a binary tree in Pre order manner

recursively.

RecPreTraversal (Root)

Step 1: If Root = Null

Print “Tree is Empty”

Return

Else

Print Root  Info
45

Continued…

Step 2: If Root  Left ≠ Null Then

Call RecPreTraversal (Root→ Left)

[End If]

Step 3: If Root  Right ≠ Null Then

Call RecPreTraversal (Root→

Right)

[End If]

Step 4: Return

46

IN ORDER TRAVERSAL

B C

FD E

A

G

B C

FD E

A

G

47
The nodes are visited in In Order as: B AD CE G F

CONTINUED….

Traversing a binary tree in In order manner

recursively.

Call RecInTraversal(Root)

Step 1: If Root = Null

Print “Tree is Empty”

Return

[End If]

Step 2: If Root  Left ≠ Null Then

Call RecInTraversal (Root  Left)

[End If]

48

CONTINUED….

Step 3: Print Root  Info

Step 4: If Root Right ≠ Null Then

Call RecInTraversal (Root  Right)

[End if]

Step 5: Return

49

POST ORDER TRAVERSAL

B C

FD E

A

G

B C

FD E

A

G

The nodes are visited in Post Order as 50
D B E G F C A

ALGORITHM

RecPostTraversal (Root)

Step 1: If Root = Null

Print “Tree is Empty”

Return

[End if]

Step 2: If Root  Left ≠ Null Then

Call RecPostTraversal (Root  left)

[End if]

Traversing a binary tree in Postorder manner recursively.

51

CONTINUED….

Step 3: If Root  Right ≠ Null Then

Call RecPostTraversal (Root→ Right)

[End if]

Step 4: Print Root  Info

Step 5: Return

52

TO FIND INTERNAL AND

EXTERNAL NODES

• The nodes which do not have any left and right child

are said to be external nodes or leaf nodes.

• All other nodes having one or two children are said

to be internal nodes.

• To find the number of external/internal nodes in a

tree we have to traverse it and we can traverse the

tree using any of the three traversal methods.
53

CONTINUED….

• During traversing the

tree

o Each node will be

tested for its number of

children.

o If it has any child then

it will be counted as

internal node

Otherwise, It will

be counted as external

node

ED

B

A

H JI

GF

C

K L

INTERNAL

NODES

EXTERNAL NODES

54

ALGORITHM

Count the number of external and internal nodes in
a Binary Tree using the pre-order traversal

Step 1: If Root = Null Then

Print : “Tree is Empty”

Exit

Else

Set Pointer = Root

[End If]

Step 2: Initialize an empty stack by pushing Null into
it and setting the stack variable Top to 155

CONTINUED….

Step 3: Initialize the variable Internal=0 and External=0

Step 4: Repeat while Pointer ≠ Null

1) If Pointer  Right ≠ Null Then

Push Pointer  Right onto the stack by

incrementing stack variable Top

[End If]

2) If Pointer  Left ≠ Null Then

Set Pointer = Pointer  Left

Set Internal = Internal + 1

Else If

Pointer  Right = Null Then

External = External + 1

56

CONTINUED….

Else

Internal = Internal + 1

[End If]

Set Pointer = Stack  Top

Decrement the Stack’s variable Top by 1

[End If]

[End Loop]

Step 5: Print : “Number of Internal and External

nodes are:” Internal , External.

Step 6: Exit

57

