
Book

A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

PRESENTATION

ON

RED BLACK TREE
&

AVL TREE

2

Contents:

• Introduction to Red Black Tree.

• Operation On Red Black Tree.

3

Introduction To Red-black Trees

• Red-Black Tree is a binary search tree in which every node is

colored red or black.

• The red black tree is a balanced tree because no path is more

than twice as long as any other path.

• Each node of red-black tree contains five fields.

color Left Key Right Parent

4

Red-black Tree Properties

• Every node of the tree is either red or black.

• The root node of the tree is always black.

• If a node in the tree is red then its both the child nodes must be

black.

• All the paths from a node to its descendent leaf nodes contain the

same number of black nodes.

• All the leaf nodes must be black.

5

Example Of Red Black Tree

50

35 80

Root node always

black

.

Leaf must be black

Node is

Red then

both child

nodes

must be

Black.

6

About Red-black Tree

• A red black tree with n nodes has the maximum height of

almost 2log2(n+1).

• The number of black nodes on any path from root node to leaf

nodes is known as black height of the tree,

• No path is more than twice as long as any other path in the

tree.

7

Operations On RB Trees

• Searching

• Insertion

• Deletion

8

Searching

• Search Operation Is Defined As Finding The Address Of A

Node Containing Desired Element.

• Search Operation On Red-black Tree Is Performed Similar To

The Search Operation For Binary Tree Because Red Black

Tree Is A Binary Search Tree.

• Complexity Of Search Operation In Red-black Tree Is Taken

As O(log2n).

9

Searching Algorithm

BSTSearch(Root,Item,Position,Parent)

Step1: If Root=Null Then

set Position = Null

set Parent = Null

Return

[End If]

Step 2: Pointer=Root And Pointer P = Null

Step 3: Repeat Step 4 While Pointer ≠ Null

Step 4: If Item = PointerInfo Then

set Position = Pointer

set Parent = PointerP

Return

Else If Item<PointerInfo Then

10

11

Searching(cont.)

Set PointerP=Pointer

Set pointer =Pointer  Left

Else

Set PointerP=Pointer

Set pointer =Pointer  Right

[End of IF]

[End of Loop]

Step 5: Set Pointer =Null and Parent=Null

Step 6: Return

12

50

30 100

70 200

250150

20 40

10

Search

node

200

If Item = Pointer Info

Item is root;

Else If Item<PointerInfo

item is found in left;

Else

item is found in right;

Example Of Searching:

Item not

found

Insertion

• Insertion operation in RB tree is performed in similar manner

as in Binary search tree with possibility that it may result in

violation of red-black tree properties because new node to be

inserted is always red.

• So, to restore the properties of RB Tree after inserting new

node, we may need to

o Change the color of some nodes.

o Rotate the tree in left or right direction.

13

Rotations

• Before discussing insertion operation on RB tree you must

clear with the concept of Rotation and how its performed.

• Two types of rotation that are:

• Left Rotation

• Right Rotation

14

Left Rotation

• The left rotation is performed by performing the configuration of

two nodes on the right into the configuration on the left side .

15

Example Of LR Rotaion:

Apply left rotation

on key =50

50

40 70

60 80

90

16

Left- Rotation Algo:

Left-Rotate (T, x)

Step 1 : If x Right ≠ Null Then
//Attach y’s left sub tree as x’s right sub tree.

Step 2. x Right = y  Left

// If y has a left child then make x as parent.

Step 3: If y  Left ≠ Null Then

y  Left  Parent = x

[End If]

Step 4: y  Parent = x  Parent // Make x’s parent as y’s parent.

//if x is the left child of its parent then make y as its left child.

Step 5:If x  Parent  Left = x then

x Parent  Left = y

//if x is the right child of its parent then make y as its right child.

17

Else If x  Parent  Right = x Then

x  Parent  Right = y

[EndIf]

Step 6: y  Left = x //Make x as y’s left child

Step 7: x  Parent = y //Make y as x’s new Parent

Else

Print:”Left Rotation is not Possible”

[End If]

Step 8: Exit

Cont.

18

Right Rotation:

• The right rotation is performed by transforming the

configuration of two nodes on the left into the configuration on

the right side .

19

Right Rotation – Pseudo-code

Right-Rotate (T, x)

Step 1: If x Left ≠ Null Then

Step 2 : x  Left = y  Right //Attach y’s right sub tree as x’s left sub tree.

// If y has a right child then make x as its parent.

Step 3:If y  Right ≠ Null Then

y  Right  Parent = x

[End If]

Step 4: y  Parent = x Parent // Make x’s parent as y’s parent

//if x is the left child of its parent then make y as its left child.

20

Step 5: If x  Parent  Left = x then
x Parent  Left = y

//if x is the right child of its parent then make y as its right child.

Else If x  Parent  Right = x Then

x  Parent  Right = y

[End If]

Step 6: y Right=x //Make x as y’s right child

Step 7: x  Parent=y //Make y as x’s new Parent

Else

Print “Right rotation is not possible”

[End if]

Step 8: Exit

Cont.

21

Example Of Right Rotation

Right Rotation on key =60

Right Rotation

22

60

30 70

15 40

5

INSERTION IN RB TREES

• Insertion must preserve all red-black properties Should an

inserted node be colored Red? Black?

• Basic steps:

o Perform Insertion as same in BST.

o Color the node x red.

o Fix the modified tree by re-coloring nodes and performing

rotation to preserve RB tree property.

23

INSERTION IN RB TREES

• To restore the red-black tree properties, there are four cases

discussed below.

• Case 1: If parent of node x is left child and uncle of node x is red

• then perform color flip.

• Grandparent of x becomes rγd and both the parent and uncle of x

becomes black.

C

A D

B

C

A D

B
α

z
β ε

γ
γ

εβ

z

α

24

• Case 2: If parent of node x is right child and uncle of node x is red

then perform color flip.

• Grandparent becomes red and both the parent and uncle of x becomes

black.

Cont.

C

A D

B

C

A D

B
α

z
β ε

γ γ

εβ

z
α

25

• Case 3: If parent of node x is left child and uncle of node x is

black then two sub cases arise:

• If x is right Child of its parent then perform the left rotation.

After this rotation, the node x and its parent are interchanged

and we take the new child as x which is now the left child.

• If x is left child of its parent then change the color of parent of

node x and grandparent of node x and perform right rotation.

Cont.

26

• Case 4: If parent of node x is right child and uncle of node x is

black then two sub cases arise:

o If x is left Child of its parent then perform the right rotation.

After this rotation, the node x and its parent are interchanged and

we take the new child as x which is now the right child.

o If x is right child of its parent then change the color of parent of

node x and grandparent of node x and perform left rotation.

Cont.

27

Insertion Algorithm Of RB Tree

Step 1: Insert the node x in Red- Black tree using BSTInsertion()
algorithm and color the node x as Red.

Step 2: Repeat while(x  Parent  Color = Red)

Step 3:If (x  Parent = x  Parent  Parent  Left) Then

Step 4:If(x  Parent  Parent  Right  Color = Red) Then

//case1 when x’s parent is left child and x’s uncle is red.

x  Parent  Color = Black

x  Parent  Parent  Right  Color

x  Parent  Parent  Color =

x = x  Parent  Parent

Else

28

//case3 when x’s parent is left child and x’s uncle is red.

If(x = x  Parent  Right) Then

//If x is right Child

x = x  Parent

Left Rotate(T,x)

[End If]

//If x is Left Child

x  Parent  Color = Black

x  Parent  Parent  Color = Red

Right Rotate(x  Parent  Parent)

[End If]

Else

Step 6: If(x  Parent  Parent  Left Color = Red) Then

29

Cont.

//case2: when x’s parent is right child and uncle is red.

x  Parent  Color = Black

x  Parent  Parent  left Color = Black

x  Parent  Parent  Color = Red

x = x  Parent  Parent

Else
//case4: when x’s parent is right child and its uncle is red.

If(x = x  Parent  Left) Then

x = x  Parent

Right Rotate(x)

[End If]
30

Cont.

x  Parent  Color = Black

x  Parent  Parent  Color = Red

Left Rotate(x  Parent  Parent)

[End If]

[End IF]

[End Loop]

Step 7:. Root  Color = Black

Step 8:. Exit

31

Cont.

Example Of Insertion

• Let us make the red black trees using the following elements:

150, 140, 130, 120, 125, 122, 110, 100

o Insert 150

o Insert 140

150

150

140

32

o Insert 130 (CASE 3):

o Insert 120(CASE 1):

150

140

130

140

130 150

140

130 150

120

140

130 150

120

140

130 150

120
x

33

Cont.

Become Black

Become

Black

Become

Black

o Insert 125(CASE 3):

140

130 150

120

125

140

130 150

125

120

140

125 150

120 130

x x

34

Cont.

Become Black

x

140

125 150

120 130

122

140

125 150

120 130

122
x x

35

Cont.
oInsert 122(CASE 3):

Become Black

o Insert 110: 140

125 150

120 130

110 122x

36

Cont.

o Insert 100(CASE 1 AND CASE 3):

140

125 150

120 130

110 122

100

140

125 150

120 130

110 122

100

x
x

Become Black

37

Cont.

38

125

120 140

122 130110 150

100

FINAL RED BLACK TREE

Cont.

Deletion Of Red Black Tree

Deletion of node from red black tree is composed of two steps:

In the 1st step , the node is deleted just like the deletion Process in

binary tree. After step 1 , the resulting the tree may not be the red

black tree .

This is because the node to be deleted may be black and even

this node may be replaced by its successor which may cause the red –

red conflict or it may cause the number of back nodes in each path

from root to leaf nodes of the tree to be different.

39

In the step 2: there are four deal with the 2nd step of deletion process.

Before discussing the cases involved in deletion process , it must

be remembered that x is the successor of node to be deleted .color

of red nodes are indicted by empty circle , color of black nodes are

indicted by dark filled circle and a light shaded color of nodes

indicate either red or black nodes.

40

Cont.

• Case 1:

If the node x’s sibling w is red then switch the color of w and x-> parent

without violating the Properties of red –black tree.

After completion of this step, the procedure moves to case 2 or 3 or4.

20

10 40

30 50

40

20 50

10 30

x W

W
x

Case 2,3 and 4 occurs if x’s sibling w is black.

Note: a, b,c and so on indicates the arbitary subtrees

ς δ

γ δ ε Ϫ

ς β γ δ

ε Ϫ

41

Cont.

• Case 2: If the sibling w is black the child nodes of w are also black

then sibling of x is changed to red and the parent of node x is made

new x, which may be red or black.

20

10 40

30 50

20

10 40

30 50

Wx

New x C

W

βα

ς δ ε Ϫ

α β

γ δ ε Ϫ

42

Cont.

• Case 3 :If x’s sibling w is black and w’s left child is red and w’s

right child is black then exchange the color of w and its left child .

After charging the colors perform right rotation on w .

20

10 40

30 50

20

10 30

40

50

New w

c

x
w

x

c

α β

γ δ ε Ϫ

α γ

ς

ε

β

43

Ϫ

Cont.

• Case 4: If x’s sibling w is black and w’s right child is red then make

the color changes and then perform left rotation on x parent . Now

remove the extra black on x.

20

10 40

30 50

40

20 50

10 30

α Ϫβ

δ

ε

δ

βα

Ϫε
γ

44

c

x
w

c

Cont.

γ

45

Example Of Deletion of Root node

125

120 140

122 130110 150

100

125

120 140

122 130110 150

100

<<AVL TREE>>

46

Contents

• Introduction to AVL Tree

• Operation on AVL Tree

47

AVL Tree

• Height Balanced : A binary search tree is said to be height

balanced tree if the nodes of the tree are organized in such a

way that the difference in heights of the left subtree and right

subtree of any node in the tree is less than or equal to one.

• Unbalanced : If the difference in heights of the left subtree

and right subtree of any node in the Binary search tree

becomes more than 1 then tree is said to be unbalanced.

48

AVL Tree (cont.)

• The bf of a node will be -ve if the height of its left subtree is less

than the height of the right subtree.

• The bf of a node will be 0 if the height of its left subtree is equal

to the height of its right subtree.

• The bf of a node will be +ve if the height of its left subtree is

larger than the height of its right subtree.

• In the nutshell,

-ve if HL < HR

bf = 0 if HL = HR

+ve if HL > HR

49

cont…

50

6040

20 25 55 70

•The following example shows some binary search tree which are

balanced i.e. tree as all the nodes in these tree have bf = 1 or -1 or 0.

50

7030

10 40

100

90

Balanced Tree

Unbalanced Tree

50

2-2=0

1-1=0 1-1=0

000 0

2-3=-1

2-2=0

0 0

0

0-2=-2

0-1=-1

Various Operations on AVL Tree

• The main operations which are commonly applied on any data

structure are also applied to AVL tree. These operations are:

• Searching

• Insertion

• Deletion

51

Insertion

• Insertion of an element in AVL tree is performed in the similar
fashion as in the case of BST(Binary search tree).

• That is if the new element is smaller than the root element, it is
inserted into the left subtree else it is inserted into the right
subtree.

• That is insertion of new node in AVL tree may cause the balance
factor of a node in the tree to change to less than -1 or more than 1.

52

Insertion(cont.)

• In such case, there is a need to balance the tree so that no

node in the tree has balance factor other than -1,0, or 1. This

balancing is done using rotations.

• This marked node is known as pivot node.

• Based upon the position of the newly inserted node, there are

types of rotations.

• Left-Left Rotation

• Right-Right Rotation

• Left-Right Rotation

• Right-Left Rotation

53

• When the new node is to be inserted in the left subtree of left

child of pivot node P the left-left rotation is performed.

Left - Left Rotation

50

25 75

10 40

5
AVL TREE

Pivot Node P is 50

Not a AVL tree

AVL tree after Left

Rotation

Insert 5
Right Rotation

54

50

25 75

10 40

2-1=1

2-2=0 0

00

3-1=2

2-1=1

1-0=1

0

0

0

2-2=0

1-0=1

0

2-2=0

0 0

Left - Left Rotation(Algorithm)

LLRotation(Root , P)

Step 1: If P  Parent = Null Then //If Pivot node is the root node

Root = P Left

Else If P  Parent  Left = P //If Pivot node is left child

P Parent  Left = P Left

Else // If Pivot node is right child

P  Parent  Right= P Left

[End If]

Step 2: Temp = P  Left  Right

Step 3 : P  Left  Right = P

Step 4 : P  Left = Temp

Step 5 : Return

55

• When the new node is to be inserted in the right subtree

of right child of pivot node P then right-right rotation is

performed.

Right - Right Rotation

50

25 75

60 100

Insert 120

Left Rotation

AVL Tree

Pivot Node P is 50

Not a AVL tree

AVL tree after Left

Rotation

56

50

25 75

60 100

120

1-2=-1

0 2-2=0

0 0

1-3=-2

0 2-2=0

0

0

0-1=-1

2-2=0

2-2=0 0-1=-1

00 0

Right- Right Rotation(Algorithm)

RRRotation (Root,P)

Step 1: If P  Parent = Null Then // If Pivot node is the root : node

Root = P Right

Else If P  Parent  Left = P //if Pivot node is left child

P  Parent->Left = P  Right

Else //if Pivot node is right child

P  Parent-> Right = P  Right

[End If]

Step 2: Temp = P  Right  Left

Step 3: P  Right  Left = P

Step 4: P  Right =Temp

Step 5: Return

57

• When the new node is to be inserted in the right subtree of the

left child of pivot node P then Left-Right rotation is

performed.

Left - Right Rotation

45

Insert 45

Pivot Node P is 50

Not a AVL tree

AVL Tree

58

50

25 75

10 40

2-1=1

2-2=0 0

00

50

25 75

10 40

3-1=2

2-1=1

0

0

0

0

p

59

Right rotation

Left rotation at

Left child of P

cont..

45

50

25

75

10

40

3-1=2

2-1=1
0

0

0

1-0=1

Pivot Node P is 50

Not a AVL tree

2-2=0

2-2=01-0=1

00 0

AVL tree after right

Rotation

p

Left –Right Rotation(Algorithm)

LRRotation(Root , P)

Step 1: If P  Parent = Null Then /If Pivot node is the root node

Root = P  Left  Right

Else If P  Parent  Left = P //If Pivot node is left child

P  Parent  Left = P  Left  Right

Else //If Pivot node is right child

P  Parent  Right = P  Left  Right

[End If]

Step 2: P  Left = P  Left  Right  Right

Step 3: P  Left  Right  Right = P

Step 4: P  Left  Right  Left = P  Left

Step 5: P  Left  Right = P  Left  Right->Left

Step 6: Return
60

• When the new node is to be inserted in the left subtree of the right

child of pivot node P the Right - Left rotation is performed.

Right - Left Rotation

Insert 55

AVL Tree

Pivot Node P is 50

Not a AVL tree

p

61

50

25 75

60 100

1-2=-1

0 1-1=0

0 0

50

25 75

60 100

0 2-1=1

1-0=1 0

55

0

3-1=2

Right Rotation Left rotation

cont..

62

p50

25

75

60

100

0 1-2=1

0-1=-10

55

0

1-3=2

Pivot Node P is 50

Not a AVL tree

2-2=0

2-2=0 1-0=1

00 0

AVL tree after left

Rotation

Right - Left Rotation(Algorithm)

RLRotation(Root,P)

Step 1: If P  Parent = Null Then //If Pivot node is the root node

Root = P  Right  Left

Else If P  Parent  Left = P //If Pivot node is left child

P  Parent  Left = P  Right  Left

Else //If Pivot node is right child

P  Parent->Right = P  Right  Left

[End If]

Step 2: Temp = P  Right  Left  Left

Step 3: P  Right  Left  Left = P

63

Step 4: P  Right  Left  Right = P  Right

Step 5: P  Right  Left = P  Right  Left  Right

Step 6: P  Right = Temp

Step 7: Exit

Right - Left Rotation (cont.)

64

Example

Create AVL Tree with following 10 elements:

50, 100, 200, 35, 15, 20, 10, 300, 250, 150, 180, 5

In each step, one element will be inserted into AVL tree and at the

end of 10th step, a final AVL tree is created.

Step 1: Insert 50

Step 2 : Insert 100

50

100

50

65

Cont.

R-R Rotation

Step3:Insert200

200

100

50

100

50 200

35

Step4:Insert 35

66

Cont.

Step5 :Insert 15

100

50 200

35

15

100

35 200

15

20

50

L-L Rotation

L-L Rotation

67

Step6 :Insert 20

Cont.

35

15

20

100

50 20010
20

300

50 20010

35

15 100

Step7: Insert10 Step 8: Insert300

68

Cont.

2010

35

15

300

50 200

100

250

Step 9: Insert250

69

2010

35

15

300

50 200

100

250

2010

35

15

50 200

100

250

300

Cont.

300

20

200

50 25010

35

15 100

150

Step 10: Insert 150

70

RL rotation

After rotation

250

20

150

50 20010

35

15 100

300

FINAL AVL TREE

Searching

•The search operation is defined as finding the address of a node

containing the desired element. The search operation on AVL tree

is applied in the similar manner as it is applied on BST. This is

because the AVL tree basically height balanced binary search tree.

• Therefore the complexity of the search operation on AVL tree is

o(log2n).

71

Searching Algorithm

BSTSearch(Root,Item,Position,Parent)

Step1: If Root=Null Then

set Position = Null

set Parent = Null

Return

[End If]

Step 2: Pointer=Root And Pointer P = Null

Step 3: Repeat Step 4 While Pointer ≠ Null

Step 4: If Item = PointerInfo Then

set Position = Pointer

set Parent = PointerP

Return

Else If Item<PointerInfo Then

72

73

Searching(cont.)

Set PointerP=Pointer

Set pointer =Pointer  Left

Else

Set PointerP=Pointer

Set pointer =Pointer  Right

[End of IF]

[End of Loop]

Step 5: Set Pointer =Null and Parent=Null

Step 6: Return

Deletion

The Deletion of element of an element in AVL tree proceed as in

procedures for deletion of an element in a binary search tree.

There are different case:

Case 1:“when node having Two child”. In this case inorder

successor of node replaced its position of the node to be

deleted.

Case 2:“when node having 0 or 1 child”. In this case deleted

node is replaced by its only child node.

74

Deletion Algorithm

CASE A (INFO,LEFT, RIGHT, ROOT, LOC,PAR)

1. [Initializes CHILD]

if LEFT →LOC=NULL and RIGHT → LOC=NULL, then

Set CHILD =NULL;

Else if LEFT → LOC ≠ NULL , then

Set CHILD= LEFT → LOC

Else

Set CHILD=RIGHT → LOC

[End of if structure]

2. If PAR≠ NULL ,then

If LOC = LEFT → PAR then

Set LEFT → PAR =CHILD

75

Else:

Set RIGHT → PAR=CHILD.

[End of if structure]

Else:

Set ROOT=CHILD

[End of if structure]

3.RETURN

Cont.

76

CASE B(INFO,LEFT,RIGHT,ROOT,LOC,PAR)

1:[Find SUC and PARSUC]

(a)Set PTR = RIGHT → LOC and SAVE=LOC.

(b)Repeat while LEFT → PTR ≠ NULL.

Set SAVE =PTR and PTR=LEFT → PTR

[end of loop.]

2: [Delete inorder succesor]

Call CASE A(INFO,LEFT,RIGHT,ROOT,SUC,PARSUC).

3: [Replace node N by its in order successor.]

(a)If PAR ≠ NULL , then

If LOC =LEFT → PAR, then

Set LEFT → PAR=SUC

Cont.

77

Cont.

Else

Set RIGHT → PAR=SUC.

[End of If structure]

Else:

Set ROOT=SUC.

[End of If structure.]

(b) Set LEFT → SUC=LEFT → LOC and

RIGHT → SUC= RIGHT → LOC

4: RETURN.

78

Cont.
DEL(INFO,LEFT,RIGHT,ROOT,LOC,AVAIL,ITEM)

1: [Find the location of ITEM and its parent ,using procedure 7.4]

Call BSTSearch (INFO,LEFT,RIGHT,ROOT,LOC,PAR,ITEM)

2: [ITEM in Tree ?]

If LOC =NULL , then,

write: ITEM not in tree

exit

3: [Delete node containing ITEM]

If RIGHT → LOC ≠ NULL and LEFT → LOC ≠ NULL, then

Call CASE B(INFO,LEFT,RIGHT,ROOT,LOC,PAR):

Else:

Call CASE A (INFO,LEFT, RIGHT, ROOT, LOC,PAR)

[End of if structure]

4: [Return deleted node to the AVAIL list.]

Set LEFT → LOC=AVAIL and AVAIL=LOC.

5:EXIT 79

80

95

45

120

60 10030

50

40 90

92

Example

42

43

20 35

32
97

55 70

81

95

45

120

60 10030

50

40 90

92

42

43

20 35

32
97

55 70

Deletion Of Node Having Two Child:

Node to be

deleted

Inoder

successor

Case 1: Deletion Of Node “100” From Tree:

82

95

45

120

60 10030

50

40 90

92

42

43

20 35

32
97

55 70

Case 2: Deletion Of Node “45” From Tree:

Deletion Of Node Having 0 or 1 Child:

