
Book

A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors
Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Sorting Techniques

2

Introduction

Sorting algorithms arrange items in a set

according to a predefined ordering

criterion. The sorting may be ascending or

descending

Example:--

Unsorted list {20,30,10,50,40}

Ascending order {10,20,30,40,50}

Descending order {50,40,30,20,10}

3

Characteristics of algorithms :

• The type and amount of data to be stored.

• Amount of memory space required by sorting

algorithm.

• Whether data is in random, partially, or in

reverse order.

• Complexity of the sorting algorithm and the ease

with which it can be implemented.

4

Sorting

Internal sorting External sorting

5

Selection Sort

• Selection sort is the sorting algorithm which is

in-place comparison sort.

• This algorithm does not use any extra space for

sorting the elements of the array.

• The idea behind the selection sort is to find the

smallest element in the array and place it with the

element at the first position in the array.

• Then, find the next smallest element of the array

by starting the search from the 2nd position to the

last position of the array and replace it with the

element at the 2nd position in the array.

6

Example

Consider the unsorted array A of size 8 shown

below

1st Pass: The smallest element is 5 from A[1] to

A[8], which is at 7th position. Exchange the

values at A[1] and A[7], which results in the array

as :

7

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

22 35 17 8 13 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

35 17 8 13 44 28522

2nd Pass: The smallest element is 8 from A[2] to

A[8], which is at 4th position. Exchange the

values at A[2] and A[4], which results in the array

as :

3rd Pass: The smallest element is 13 from A[3] to

A[8], which is at 5th position. Exchange the

values at A[3] and A[5], which results in the array

as :

8

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 17 13 44 22 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 35 44 22 28

35 8

17 13

4th Pass: The smallest element is 17 from A[4] to

A[8], which is at 5th position. Exchange the

values at A[4] and A[5], which results in the array

as :

5th Pass: The smallest element is 22 from A[5] to

A[8], which is at 7th position. Exchange the

values at A[5] and A[7], which results in the array

as :

9

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 44 22 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 44 28

35 17

35 22

6th Pass: The smallest element is 28 from A[6] to

A[8], which is at 8th position. Exchange the

values at A[6] and A[8], which results in the array

as :

7th Pass: The smallest element is 28 from A[7] to

A[8], which is at 7th position. No exchange will

take place as the element is already at its proper

position.

no exchange due to 28 <35 and 28 <44

10

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 22 35

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 22 28 35 44

44 28

Selection Sort Algorithm

Algorithm to sort an array ‘A’ with ‘n’ elements :

Step 1:Repeat Steps 2 to 5 For i=1 To n-1

Step 2: Set Min = A[i] And Flag = False

Step 3: Repeat Step4 For j = i+1 To n

Step 4: If A[j] < Min Then

Set Min = A[j]

Set Pos = j And Flag = True

[End If]

[End Loop2]

11

12 Step 5: If Flag = True Then

Set Temp = A[i]

Set A[i] = A[Pos]

Set A[Pos] = Temp

[End If]

[End Loop1]

Step 6: Exit

Analysis of Selection Sort
Comparison to place the smallest element at first position in

first pass is n-1. Comparison to place the second smallest

element at second position in second pass is n-2.

Comparison to place the third smallest element at third

position in third pass is n-3 and so on. In the last pass there

will be only one comparison for last two elements. Total

comparisons will be,

f(n) = (n-1) + (n-2) + (n-3) + …..+3 + 2 + 1

= n x (n-1)/2

≈ O(n2)

Complexity = O(n2)

13

Analysis of Selection Sort

• Selection sort has same complexity in best case,

average case, as well as in worst case.

• This is because the number of comparisons will

remain same (n * (n-1)/2) to find the smallest

element in unsorted part of the array.

• But, in case of best case, the time consumption in

exchanging the element of array will be saved, as

no exchange will be required, because the array

is already sorted in best case scenario.

14

Insertion sort
• Insertion is also an in-place comparison sorting

technique.

• This algorithm is also known as online sorting

method because it sorts elements as it receives the

elements.

• Insertion sort is stable as it does not change the

relative position of the elements with equal value.

• The idea behind this sorting method is to sort all

elements by inserting one element each time from

the unsorted part of the list into the sorted part of

the list.

15

Example :--

Consider an unsorted array A of size 8 shown below

Initially, we consider that the whole list of elements is

divided into two parts i.e. sorted part consisting of the

first element of array and the unsorted part consisting of

n-1 elements.

:

16

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

22 35 17 8 13 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

22 35 17 8 13 44 5 28

Here, the first element A[2](=35) of the unsorted part is

compared with the element A[1](=22) in the sorted part of

the list.

First pass:

d

Now, comparing element A[3](=17) the first element of

the unsorted part of the list, with the elements of the

sorted part of the list i.e. A[2](=35) and A[1](=22), the

element A[3] will be inserted at the first position.

17

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 13 44 5 283522 17

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 13 44 5 2822 17 35

Second pass:

Now, it’s the turn for the element A[4](=8),which will be

compared with the elements in the sorted part of the list

until an element smaller than A[4] is found.

18

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

13 44 5 288352217

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

35 13 44 5 2882217

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

22 35 13 44 5 2817 8

As the elements A[3],A[2] and A[1] are greater than

A[4](=8), so, these, elements will be shifted one

position towards right and the element A[4] will be

inserted at position A[1].

Third pass

19

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 44 5 2817 12 35 13

20

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 22 35 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 17 35 44 5 281322

1317

Now, the sorted part of the list has four sorted

elements and remaining four elements are present in

the unsorted part. In the next step , the elements

A[5](=13) will be inserted at the position A[2] after

shifting elements A[2],A[3] and A[4]one position

towards right.

In next step, element A[6] will remain at the same

Position.

Fourth Pass:

Next element A[7] will be inserted at the position A[1]

21

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 13 17 22 35 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

28544352217138

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 13 17 35 44 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 13 17 22 44 28535

22 5

22

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 13 22 35 44 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 17 22 35 44 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

13 17 22 35 44 28

17 5

13 5

58

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 22 44

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 22 35 2844

2835

Fifth Pass:

In final step, the A[8](=28) will be inserted at position

A[6] and the resulting sorted list will be:

After all the steps we got final sorted list as given below:

23

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 22 28 35 44

Insertion Sort Algorithm

Sorts an array ‘A’ with ‘n’ elements using the

sort technique.

Step1: Repeat steps 2 to 4 for i=2 to n

Step2: Set Temp=A[i] and k=i-1

Step3: Repeat While Temp<A[k] AND k>0

Set A[k+1]=A[k]

Set k=k-1

[End loop]

Step 4: Set A[k+1]=Temp

[End loop]

Step 5:Exit

24

Analysis of Insertion Sort

The worst case for this sorting technique is, when

elements of the list are in the reverse order of the

desired one. In the worst case, each element of the

unsorted part will be compared with all the elements

of the sorted part of the list. Thus, in this case,

To position the 2nd element of the list at proper

position, No of comparisons =1

To position the 3rd element of the list at proper

position, No of comparisons =2

To position the 4th element of the list at proper

position, No of comparisons =3

25

:

:

To position the nth element of the list at proper position, No

of comparisons =n-1

So, the total no. of comparisons in the worst case.

f(n)=1+2+3+4+5+6+…..+(n-2)+(n-1)

=n*(n-1)/2

=O(n2)

Thus, for the worst case the complexity of the insertion sort

is O (n2). The best case for this algorithm is when elements

are already sorted. Then the complexity will be O(n).

however, for the average case complexity will be O(n2).

26

Merge sort

• Merge sort is one of the best sorting techniques

which is based on the divide and conquer strategy.

• The Merge Sort reiterates on the list of elements

by dividing it into smaller portions and sorting

each sub-portion.

• The Merge Sort divides partitions in half by using

the formula:

Mid=(Lower+Upper)/2

Here, Lower is the lower index and Upper is the

upper index of array.

27

28

• Merge Sort reiterates on both the newly formed

partitions by dividing them in half and continue the

process.

• This process of dividing stop when the partition size

reaches to one item.

• At this point it has created many one-item lists. Any

one-item list is naturally in sorted order.

• The next step is to merge these one-item lists together

for creating the sorted list.

• To combine two sorted lists, the merge sort compare

successive pairs of elements, one from each list.

• If the list A has any element < than all the elements of

list B, then it will be chosen to be append to the

aggregated list or vice versa.

• And when all the elements of one list are added to the

aggregated list then all the remaining elements of other

list will be append directly to the aggregated list.

• This merging process takes at least (n/2) comparisons

but not more than (n-1) comparisons.

• Merge Sort repeats the process of combining sorted

sub-lists into larger sorted sub-lists until all have been

successfully integrated into a single sorted list.

29

Example

To understand the concept and working of merge sort

algorithm, lets us consider an unsorted array A of size 8 :

41,35,17,8,13,44,5,28

Algorithm start splitting array A into sub-arrays A[1:4]

and A[5:8] of size four each as shown below:

A[1:4] A[5:8]

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

41 35 17 8 13 44 5 28

A[5] A[6] A[7] A[8]

13 44 5 28

30

A[1] A[2] A[3] A[4]

41 35 17 8

31

A[1] A[2] A[3] A[4]

41 35 17 8

A[5] A[6] A[7] A[8]

13 44 5 28

A[1] A[2]

41 35

A[3] A[4]

17 8

A[5] A[6]

13 44

A[7] A[8]

5 28

Now, the sub-arrays A[1:4] and A[5:8] are split into

arrays (A[1:2] & A[3:4]) and (A[5:6] & A[7:8])

respectively of size two each as shown below:

A[1:2] A[3:4] A[5:6] A[7:8]

A[1:2] A[3:4] A[5:6] A[7:8]

Now, at this point, arrays A[1:2] , A[3:4] , A[5:6] , A[7:8]

are split into final one element sub –arrays (A[1:1] &

A[2:2]),(A[3:3] & A[4:4]) , (A[5:5 & A[6:6]) and (A[7:7] &

A[8:8]) respectively as shown

A[1:1] A[2:2] A[3:3] A[4:4] A[5:5] A[6:6] A[7:7] A[8:8]

A[1] A[2]

41 35

A[3] A[4]

17 8

A[5] A[6]

13 44

A[7] A[8]

5 28

A[8]

28

A[7]

5

A[6]

44

A[5]

13

A[4]

8

A[3]

17

A[2]

35

A[1]

41

32

Now the sub-arrays A[3:3] and A[4:4] are merged to

produce sorted array A[3:4] of size two. At this stage

array can be pictorially shown as:

33

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

35 41 17 8 13 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

35 41 8 17 13 44 5 28

Next, the sub-array a[1:2] and A[3:4] are merged

to produce a sorted sub array A[1:4] of size 4

which is shown below:

Now, the pending task of sorting the unsorted

sub-array A[5:8] will be assumed as task of

diving and sorting the sub-array A[1:4] is over.

34

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 17 35 41 13 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 17 35 41 13 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 17 35 41 13 44 5 28
35

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 17 35 41 13 44 5 28

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

8 17 35 41 5 13 28 44

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 28 35 41 44

A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

5 8 13 17 28 35 41 44

36

A[1] A[2] A[3] A[4]

8 17 35 41

A[5] A[6] A[7] A[8]

5 13 28 44

A[3] A[4]

8 17

A[5] A[6]

13 44

A[7] A[8]

5 28

A[1] A[2]

35 41

MERGE

MERGE MERGE

MERGE MERGE

A[1]

35

A[2]

41

A[3]

8

A[4]

17

A[6]

44

A[5]

13

A[8]

28

A[7]

5

Following Merge Sort algorithm sorts an unsorted list of

elements using recursion and function MergeLists().

Algorithm: Sorts an array A[L:U] using an auxiliary

array ’B’

MergeSorting(Lower , Upper)

Step1:If Upper>Lower Then

Step2: Set Mid = (Lower + Upper)/2

Step3: Call MergeSorting(Lower , Mid)

Step4: Call MergeSorting(Mid+1 , Upper)

Step5: Call MergeLists(Lower , Mid , Upper)

[End If]

Step6: Return

37 Algorithm of Merge Sort

Algorithm: Merges two sorted sub-lists into a single

sorted list.

MergeLists(Lower, Mid, Upper)

Step1: Set Lb1 = Lower , Lb2 = Mid+1

Set Ub1 = Mid , Ub2 = Upper

Set Ub1 = Mid , Ub2 = Upper

Set k = 1

Step2:Repeat Step3 While Lb1<Ub1 AND Lb2<Ub2

Step3: If A[Lb1]<A[Lb2] Then

Set B[k] = A[Lb1]

Set Lb1 = Lb1+1

Set k = k+1

Else

Set B[k] = A[Lb2]

38

Set Lb2 = Lb2+1

Set k = k+1

[End If]

[End Loop]

Step4: If Lb1>Ub1 Then

While Lb2<=Ub2

Set B[k] = A[Lb2]

Set A[Lb2] = A[Lb2]+1

Set k = k+1

[End Loop]

Else

While Lb1<=Ub1

Set B[k] = A[Lb2]

Set A[Lb2] = A[Lb2]+1

Set k = k+1

[End Loop]

[End If]

39

Else

While Lb1<=Ub1

Set B[k] = A[Lb2]

Set A[Lb2] = A[Lb2]+1

Set k = k+1

[End Loop]

[End If]

Step5: Repeat For k = Lower to Upper

Set A[k] = B[k]

[End Loop]

Step6: Return

40

• In the first pass, sub-lists of size one are merged.

• In the second pass, the size of sub-lists being merged is 2.

• In the kth pass sub-lists being merged will be of size 2(k-1).

• A total of logn passes will be performed over the data.

• Since, two files can be merged in linear time, each pass of
merge sort takes O(n) time.

• As there are logn passes, the total time complexity is O(n
log n).

• Merge sort is not in-place algorithm as it requires extra
space to store the sorted elements.

• Merge sort algorithm is stable as the replicated elements
do not exchange their positions.

41 Analysis of Merge Sort

Shell sort

• Shell sort is a generalization of insertion sort.

• Shell sort is named after its inventor Donald Shell

who developed the technique in 1959.

• Shell sort is in-place comparison sort.

• Shell sort is also known as diminishing

increment sort.

• This is because, the gap between the elements to be

compared decreases as the sorting algorithm runs

until the last phase in which adjacent elements are

compared with gap equal to one.

42

Basic Idea

• Set a gap h that is smaller than the number of elements in

the list and larger than 1.

• Group all the elements of the list in h groups by putting

elements that are h positions away from each other into

the same group.

• Sort each group by exchanging locations of elements in

the same group. Each group will have sorted elements

and such a group is called h-sorted.

• Following the idea with decreasing value of h(value of h

may be taken any but smaller than previous h) ending in

1, will produce the list of sorted elements.

43

Consider a list of 12 elements :

1 2 3 4 5 6 7 8 9 10 11 12

considering the gap h as 5,3 and 1 respectively,

Pass 1:The gap is h = 5 and group is calling 5-sorting.

5-sorting performs the insertion sort on the five sub arrays

A1(a1,a6,a11), A2(a2,a7,a12), A3(a3,a8), A4(a4,a9), A5(a5,a10)

Example44

64 85 20 55 09 17 97 88 49 71 27 30

1 2 3 4 5 6 7 8 9 10 11 12

45

64 85 20 55 09 17 97 88 49 71 27 30498897179055208564 2771 30

5-sorting performs the insertion sort on the five sub arrays

A1(a1,a6,a11), A2(a2,a7,a12), A3(a3,a8), A4(a4,a9), A5(a5,a10)

• Rewriting the elements of five sub-arrays

(A1,A2,A3,A4,A5) column wise, we get five sub-lists as,

A1 A2 A3 A4 A5

64 85 20 55 09

17 97 88 49 71

27 30

• Now, apply the insertion sort on these five lists separately,

we get

A1 A2 A3 A4 A5

17 30 20 49 09

27 85 88 55 71

64 97

46

The list of elements after 1st pass becomes,

1 2 3 4 5 6 7 8 9 10 11 12

Pass 2:The gap is h = 3 and group is calling 3-sorting.

3-sorting performs the insertion sort on the five sub

arrays A1(a1,a4,a7,a10), A2(a2,a5,a8,a11), A3(a3,a6,a9,a12)

47

17 30 20 49 09 27 85 88 55 71 64 9755 71 64 978885270949203017

• Rewriting the elements of three sub-arrays (A1,A2,A3)

column wise, we get three sub-lists as,

A1 A2 A3

17 30 20

49 09 27

85 88 55

71 64 97

• Now, apply the insertion sort on these three lists

separately, we get

A1 A2 A3

17 09 20

49 30 27

71 64 55

85 88 97

48

The list of elements after 2nd pass become,

1 2 3 4 5 6 7 8 9 10 11 12

49

17 09 20 49 30 27 71 64 55 85 88 97

Pass 3:The gap is h = 1 and group is calling 1-sorting.

3-sorting performs the insertion sort on the five sub arrays

A1(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12) as shown below:

1 2 3 4 5 6 7 8 9 10 11 12

Now, apply the insertion sort on the single list, we get,

1 2 3 4 5 6 7 8 9 10 11 12

50

17 09 20 49 30 27 71 64 55 85 88 97

09 17 20 27 30 49 55 64 71 85 88 97

• The choice of gap size sequence h is not fixed and can

be chosen arbitrarily. We have considered the gap size

sequence as 5,3 and 1. Various researchers have suggested

different gap size sequences.

• Donald Shell (the inventor of shell sort) proposed the gap

size sequence as FLOOR (n/2k), for k being the integer

starting with 2. The gap sequence comes out to be n/2, n/4,

n/8,……1.

• Knuth proposed the gap size sequence as (3k – 1)/2, for k

being the integer. The gap sequence comes out to be 1,

4,14, 40,121.

• Pratt proposed the gap size sequence as successive

number of the form(2p3q). The gap sequence comes out to

be 1, 2, 3, 4, 6, 8, 9, 12…

51

Algorithm: Sort an array ‘A’ of size ‘n’ using Shell sort.

The gap size is taken as original shell sequence i.e. n/2,

n/4, n/8,…1

Step1 : gap = n/2

// gaps being used are of shell sequence

Step 2: Repeat Steps 3 to 10 while gap>= 1

Step 3: i = gap + 1

Step 4: Repeat Steps 5 to 9 while i<n

Step 5: Temp = A[i]

Step 6: j = i

Step 7: Repeat while j>= gap AND

A[j-gap] > Temp

A[j] = A[j-gap]

j = j-gap

Algorithm of shell sort
52

[End Loop]

Step 8: A[j] = Temp

Step 9: i = i+1

[End Loop]

Step10: gap = gap/2

[End Loop]

Step11: Exit

53

Analysis of shell sort

• Complexity of the shell sort is dependent upon

the gap size sequence chosen.

• It has been empirically found that the shell sort

performs better than insertion sort, bubble sort,

and selection sort.

• The worst case complexity of the shell sort lies

between O(nlog2n) and O(n2) and on the average

it is approximately O(n1.25).

54

Radix Sort

• Radix Sort is a Invention of Herman Hollerith
in year 1887 while working on tabulating
machines.

• The radix sort is non-comparison integer sort
method in which the comparison of elements to
be sorted is not performed irrespective to other
methods.

• Different from other methods like bubble sort ,
insertion sort, selection sort in which elements
are compared with each other to perform sorting .
But in radix sort structure of element is taken
care rather than comparing the elements ,the
structure is taken care.

55

• Individual digits of each element are taken care.

• Individual digits share the same significant position

and value.

• Radix sort is known to be integer sort method.

• Even then this is not limited to sorting integers only.

• Can be applied to floating point , alpha-numeric

elements or any other type.

56

Types of Radix Sort

MSD Radix Sort

The sorting starts from most significant digit(from left most digit

to right most digit).MSD radix sort can be applied to sorting of

string.

LSD Radix Sort

The sorting from least significant digit(from right most digit to

left most digit). LSD radix sort is applied to numeric number

sorting.

57

Example

To understand radix sort , consider the following sets of numbers

Example 1 :

005,017,008,785,890,889,431,,052,443,099,692

The given elements are numbers LSD radix sort will be applied to

sort elements in ascending order.

Three passes require to sorting elements because elements given

to be three digit numbers.

58

First pass

• The digit at 1’s place is taken care.

• Elements are written according to sorted order of this least

significant digit.

Second pass

• The digit at 10’s place is taken care.

• Elements are written according to sorted order of this least

10’s place digit.

Third pass

• The digit at 100’s place is taken care.

• Elements are written according to sorted order of this least

100’s place digit.

59

Example

0 0 5

0 1 7

0 0 8

7 8 5

8 9 0

8 8 9

4 3 1

0 5 2

4 4 3

0 9 9

6 9 2

Pass =1

8 9 0

4 3 1

0 5 2

6 9 2

4 4 3

0 0 5

7 8 5

0 1 7

0 0 8

0 8 9

0 9 9

0 0 5

0 0 8

0 1 7

4 3 1

4 4 3

0 5 2

7 8 5

8 8 9

8 9 0

6 9 2

0 9 9

Pass=2 Pass=3

0 0 5

0 0 8

0 1 7

0 5 2

0 9 9

4 3 1

4 4 3

6 9 2

7 8 5

8 8 9

8 9 0

60

Algorithm: Sorts the elements using Radix sort.

// b is the maximum number of digits in each element

Step 1: Repeat for k=1 to b.

Step 2: Sort the elements in a stable way

looking at kth digit only.

[End Loop]

Step 3: Exit

Algorithm of Radix sort
61

• The complexity of radix sort can be calculated depending

upon the number of passes.

• The number of passes in the radix sort is as many as the

number of digits in the elements.

• In each pass n elements are sorted looking at kth digit

only.

• Complexity of radix sort is O(b n) .Here n is Number of

elements & b is maximum number of digit in each

element.

62 Analysis of Radix sort

• We can compare the complexity with O(nlog2n)

and cannot guarantee that O(b n) is less than

O(nlog2n).

• This is because if we have n-1 elements with a few

digits but one element have more than n digits,

than the values of b will becomes more than n and

complexity will become more than O(n2). So, if the

number of digits is less in the elements then the

radix sort performs well .

63

• External Sorting is the sorting technique that can handle

huge amount of data .

• Data is as large that cannot be accommodated in Main

memory. Instead data must reside in a slower external

Memory.

• The main concern with external sorting to minimize disk

access.

• Usually, the external sorting is referred as file sorting.

64
External Sorting

Phases

Sorting Merge Output

65

Sorting Phase : chunks of data small enough that can fit .

In main memory and read ,sorted using an internal sorting

technique.

Merge Phase : the sorted sub files are combined into large

file.

Output Phase :the merged files are written out to the

external storage disk.

66

Example

Take example of sorting 12000 records which cannot be

Accommodated in main memory as a whole simultaneously.

To sort these records, external sorting technique is used.

Solution :

• First of all , these all records are divided into chunks

Say chunks of 2000 records(which can be accommodated

into the main memory) and apply the internal sorting method

on all these 6 chunks .

• We get the 6 sorted sub files (each sub file contains 2000

sorted records) which are now sorted individually.

67

68

• Let these files are F1 having records 1 to 2000, F2

having records 2001 to 4000,F3 having records 4001 to

6000 and so on.

• Merge all these 6 sorted sub files starts. We use 2-way

merge in which, we use a method of merging 2 input

files at once.

Merge Pass 1

First of all files F1 and F2 are merged to get a file say F7

which contains sorted record from 1 to 4000 and this file is

written back to external storage media.

In second step , the files F3 and F4 are merged to get a file

F8 which sorted records from 4001 to 8000 and this

File is written back to external storage media.

In third step, the files F5 and F6 are merged to get file F9

which contains the sorted record from 8001 to 12000 and this

file written back to external storage media . Now, the problem

is reduced to merge the three files F7, F8

And F9 .

69

First of all files F7 and F8 are merged to get a file say F10

which contains sorted records from 1 to 8000 and this file is

written back to external storage media .

As only one file F9 remaining, so in this pass , we leave this

file as it is. And now the problem is reduced to merge the

two files F10 and F9.

Merge Pass 2:

Here , the files F10 containing records 1 to 8000 and

file F9 containing records 8001 to 12000 are merged to

create a single file which contains all the records 1 to

12000 which are now and this file is written back to

external storage media.

Merge Pass 3:

70

