
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors
Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Header Linked List

2

CONTENTS

• Applications of the linked list

• Header linked list

3

Header Linked List

A header linked is a special kind of linked list which contains a

special node at the beginning of the list. This special node is

known as header node and contain important information

regarding the linked list. This information may be total number

of nodes in list, some description for the user like creation and

modification data about, whether the data in the list is sorted

and unsorted. The header linked list in shown below:

A Header Linked List

Header Node

52 7062 40 Null

Begin

4

Categories of Header Linked List

� Grounded Header Linked List

� Circular Header Linked List

� Two-Way Header Linked List

� Circular Two-Way Header Linked List

5

Grounded Header Linked List
A grounded header linked list is a list in which last node of
the list control the Null in its Next pointer field. Shown in
figure blow:

Header node

An Empty Grouned Header Linked List

Begin

Null

6

A Circular Header Linked List

Begin

80 70 50

A Circular header linked list is a list in which last node of the

list points back to the header node i.e. Next pointer field of the

last node contains the address of the header node. Shown in

figure blow:

Circular Header Linked List

7

In general, a header node can be inserted in any type of linked

list either one-way or two-way linked list. Shown in figure blow:

Null 77 75 31 75 Null

Begin

A Two-Way Header Linked List

A Two –Way Header Linked List

8

A two-way circular header linked list shown in figure blow:

75 70 80 82

Begin

A Two-Way Circular Header Linked List

A Two-Way Circular Header Linked List

9

Operation Performed On Header Linked List

Algorithm: Traverses a circular header linked list

Step 1: If begin Next =Begin Then

Printf: “Circular header linked List is Empty”

Exit

[End If]

Step 2: Set Pointer=Begin Next

Step3: Repeat Step 4 and 5 While Pointer !=Begin

Step 4: Process Pointer Info

Step 5: Set Pointer =Pointer Next

[End loop]

Step 6: Exit

10

Applications Of The linked List

• To represent the Polynomials

• To represent sparse matrices

• To implement other data structures like Tree, Graph, Stack,

queue etc.

11

A polynomials are frequently used in both mathematical as well as

scientific applications. In Mathematics, various operations are

performed on polynomials, e.g. addition of two polynomials, subtraction

of a polynomial form other , multiplication and division etc.

A polynomial is mathematical equation of type:

Representation of Polynomials

Power of the Term

Co-efficient

of the term
Link to the

Next Term

1134113:)21(

9643:2

9683:1

234

23

34

+++−−

++−

++−

xxxxPPnSubtractio

xxxP

xxxP

12

Linked List Representation of the polynomials ‘p1’

Linked List Representation of the polynomials ‘p2’

Linked List Representation of the Resultant polynomials ‘p’

Begin

Begin

Begin

3 4 -8 3 6 1 9 0 Null

-2 0 Null3 13 3

3 4 -11 3 3 1 11 0 Null

13

P1

P2

Algorithm :Subtraction of a polynomial

Step 1: If P1=Null OR P2=Null then

printf:” One or both n the polynomial are Null”

EXIT

[End if]

Step 2: If Free =Null Then

Printf” No free space available”

Exit

[End if]

Step 3: Set P=Null

Step 4: Allocate memory to node New

(Set New=Free And Free =free Next)

Step 5: Set Pointer1=P1 And Pointer2=p2
14

Step 6: If Pointer1 Pow=pointer 2 Pow Then

Set New Coeff=Pointer 1 Coeff – Pointer 2 Coeff

Set New Pow=Pointer 1 Pow

Set Pointer 1=Pointer 1 Next

Set Pointer 2=Pointer 2 Next

[END IF]

Step7: If Pointer 1 Pow>Pointer 2 Pow then

Set New Coeff=Pointer 1 Coeff

Set New Pow=Pointer 1 Pow

Set Pointer 1 =Pointer 1 Next

Else

Set New Coeff=(- Pointer 2 Coeff)

Set New Pow=Pointer 1 Pow

Set Pointer 2 =Pointer 2 Next

[End if]

Step 8: Set New Next=Null

Set Pointer =New

Set P=New 15

Step 9 Repeat Step10 to 13 While Pointer1!=Null AND Pointer2!= Null

Step 10: If Free =Null Then
Printf:”No available space”
Exit

[End If]

step 11: Allocate memory to node New
(set New=Free And Free=Free Next)

step12: if Pointer1 Pow=Pointer2 Pow Then
Set New Coeff=Pointer1 Coeff -Pointer2 Coeff
Set New Pow =Pointer1 Pow
Set Pointer1 =Pointer1 Next
Set Pointer2=Pointer2 Next
Else If Pointer1 Pow>Pointer2 Pow Then
Set New Coeff=Pointer1 coeff
Set New Pow=pointer1 Pow
Set Pointer1=Pointer1 Next

16

Else

Set New Coeff=-(Pointer2 Coeff)

Set New Pow=pointer2 Pow

Set Pointer2=Pointer2 Next

[End If]

step 13: Set New Next=Null

Set Pointer Next=New And Pointer=New

[End Loop}

Step14: If Pointer1=Null then

repeat Step a to g while Pointer2!=Null

a if free = Null then

printf:” Not enough space”

Exit

[End if]

17

b Allocate Memory to Node New

(Set New =Free And free=Free Next)

c New Coeff=-(Pointer2 Coeff)

d New Pow=Pointer2 Pow

e Pointer2=Pointer2 Next

f Set New Next=Null

g Set Pointer Next=New And Pointer=New

[End Loop]

Else

Repeat Step a to g while Pointer1!=Null

a if free =Null then

printf:” Not enough space”

Exit

[End if]
18

b Allocate Memory to Node New

(Set New =Free And Free=Free Next)

c New Coeff=-(Pointer2 Coeff)

d New Pow=Pointer2 Next

e Pointer2=Pointer2 Next

f Set New Next=Null

g Set Pointer Next=New And Pointer=New

[End Loop]

[End if]

Step 15: Exit

19

Storage of Sparse Array
A matrices are two dimensional arrays in which elements

are arranged into row and columns, a matrix of order r * c

is collection of r * c elements which are arranged in r rows

and c columns that is called Sparse Array.

The main problem in the array representation

of sparse array is that, it requires a lot of data movement

while insertion and deletion of elements. This data

movement can be avoided if linked representation is used to

store the sparse array. Consider a two dimensional array A

of order 5*5 as shown below:
4 0 0 2 0

0 0 9 0 0

A= 0 0 0 0 0

0 5 0 0 6

7 3 0 0 0

A Sparse Matrix A of order 5*5
20

Representing a two dimensional array, the structure of the

nodes in the

linked list will be as shown below:

Pointer to

Next Row

Row

Number
Pointer to

the first non-zero

element of the Row

Column

Number Pointer to

the first non-zero

element In same

Row

Element

Structure of Nodes used for representing the sparse Matrix

21

LINKED LIST REPRESENTATION OF SPARSE MATRIX ‘A’

22

BEGIN

1 1 4 4 2 Null

2 3 9 Null

4 2 5 5 6 Null

5 Null 1 7 2 3 Null

R
O

W
 N

U
M

B
E

R

P
O

IN
T

E
R

 T
O

 N
E

X
T

R
O

W

H

A
V

IN
G

T
W

O

N

O
N

Z

E
R

O

E
L

E
M

E
N

T

C
O

L
U

M
N

 N
U

M
B

E
R

E
L

E
M

E
N

T

POINTER TO NEXT

ELEMENT IN SAME ROW

Implementing Other Data Structures

Linked lists are frequently used to implement various linear

and non-linear data structure like stack, queue, tree and graph.

The use of linked lists to implement these data structure will be

discussed in the subsequent chapters.

23

