
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

Department of Computer Science, Punjabi University Patiala

APPLICATIONS OF

STACK

• Evaluation of Arithmetic Expression

• Matching Parenthesis

• Quick Sort

• Recursion

Contents for Today’s Lecture

Applications of Stack

The stack is used in wide variety of applications. These are

extensively used in system programming (compilers and

operating system)and application programming .

Evaluation of Arithmetic Expression

An important application of stack is the compilation of

arithmetic expression in the programming languages. The

compiler must be able to translate the expression which is

written in the usual notation known as infix notation to a

form which is known as reverse polish notation. Compilers

accomplish this task of notation conversion i.e. infix to

postfix with the help of stack.

The most common notation that is used while expressing

arithmetic expression is infix notation. In this notation, operator is

placed between its operands. For example, to multiply m and n

we write m * n. It is the notation that is used by most of the

people to solve any mathematical/arithmetic expressions. But,

while solving the infix notation, the main consideration is the

precedence of the operators and their associativity. For example,

consider an expression,

e = q * r + s

In this expression, following the precedence rules, q and r are first

multiplied and then s is added. That is, *(multiplication) operator

has precedence over the +(addition) operator.

Infix Notation

Infix Notation (Continued)

With this notation, we have to distinguish between(q*r)+s and

q*(r+s) by using either operator precedence rule or by applying

some parenthesis. Such type of expressions cannot be solved

accurately if we do not follow the rules of operator of

precedence and their associativity.

The main problem with this notation is that the order of operator

and operands in the expression does not uniquely decide the

order in which operations are to be carried out.

Infix Notation (Continued)

Table showing the precedence and associativity of the various

operators.

Priority Operator Associativity

1st Brackets Inner to Out and Left to Right

2nd Exponent ^ Left to Right

3rd * / Left to Right

4th + - Left to Right

5th = Right to Left

Consider an expression,

e = 4 – 2 ^ 4 + 8 * 3 + 18 / 3 + 6

^ having highest precedence over the other operators, will be solved

first

e = 4 – 16 + 8 * 3 + 18 / 3 + 6

Now, * and / operations will be performed from left to right because

both are having same level of precedence.

e = 4 – 16 + 24 + 18 / 3 + 6

e = 4 – 16 + 24 + 6 + 6

Now, + and – operations will be performed from left to right because

both are having same level of precedence.

e = - 12 + 24 + 6 + 6

e = 12 + 6 + 6

e = 18 + 6

e=24

Infix Notation (continued)

This notation is also popular with the name polish notation

which is named after polish mathematician Jan Lukasiewicz.

In 1920’s, this polish mathematician developed a system in

which mathematical expression can be specified without

parenthesis by placing the operator before or after its operands.

In prefix notation, operator is placed before its operands. For

example, to multiply m and n we write *mn.

The main characteristics of this notation is that the order in

which the operations are to be carried out is completely

determined by the position of operators and operands in the

expression. While solving the arithmetic expression which is

written in prefix/polish notation, there is no need to take care if

any precedence rule and there is no need to put the parenthesis

in the expression.

Prefix notation

In order to translate an arithmetic expression from infix to polish

notation, we will do it by step by step by using [] (square

brackets)to indicate the partial conversion. This means the

expression within the square brackets will be treated as a single

operand.

Example 1:

Iin = (a – b)/ c

= [- ab] / c

Ipre = / - abc

Example 2:

Iin = (x – y)*((z + v) / f)

= [- xy]*([+ zv] / f)

= [- xy]*[/ + zvf]

Ipre = * - xy / + zvf

Prefix Notation (continued)

Prefix Notation (continued)

Example 3: Iin = ((a + b) / d ^((e – f) + g))

= ([+ab]/ d ^ ([- ef] + g))

= ([+ab] / d ^ [+ - efg])

= [+ ab] / [^ d + - efg]

Ipre = / +ab ^ d + - efg

Example 4: Iin=(x*y) + (z + ((a + b - c) * d)) – I * (j / k)

= (x * y) + (z + (([+ ab] – c) * d)) - i * (j / k)

= (x * y) + (z + ([- + abc] * d)) - i * (j / k)

= (x * y) + (z + [* - + abcd]) - i * (j / k)

xy] + [+ z * - + abcd] – [* i / jk]

= [+ * xy + z * + abcd] - [= [* xy] + (z + [* - + abcd]) - i *(j / k)

= [* xy] + [+ z * - + abcd] – i *(j / k)

= [* xy] + [+ z * - + abcd] - i *(/jk)

= [* * I / jk]

Ipre = - + * xy + z * - + abcd * i / jk

The postfix notation is also known as reverse polish notation. In

this notation, operator is placed after its operands. Arithmetic

operations like +,*, / and ^ will be shown with its operands m and

n as mn +, mn -, mn *, mn / and mn ^ respectively. The

fundamental characteristics of this notation is that there is no

need of parenthesis to designate the hierarchy of operators. In this

notation, order of operations is completely determined by the

order of operands and its operators.

In order to convert an arithmetic expression from infix to reverse

polish notation, we to indicate the partial conversion. This

means the expression within the square brackets will be treated as

single operand.

Postfix Notation

Conversion from Infix to Postfix Notation

Example 1: Iin = (a – b)/ c

= [ab -]/ c

Ipost = ab – c/

Example 2: Iin = (x – y) X ((z + v)/ f)

= [xy -] X ([zv +]/ f)

=[xy -] X [zv + f /]

Ipost = xy – zv + f / X

Note: In computer, an infix notation is evaluated in two steps. In the first

step, the expression is converted in the reverse polish notation and in the

second step, the converted expression is evaluated. The reason behind this

notation conversion is that postfix expression is very efficient for the point

of view of evaluation done by computers. As postfix expression is scanned

from left to right, operands are simply placed into a stack and operators may

be immediately applied to operands which are at the top of the stack. By

contrast, expression with parenthesis and precedence (infix notation) require

the operators to be delayed until some later point. Thus compilers, in all

modern computers convert the arithmetic expressions to reverse polish

notation for evaluation.

Step 1: Push a left parenthesis (onto the stack.

Step 2: Append a right parenthesis) at the end of Given expression I.

Step 3: Repeat steps from 4 to 8 by scanning I character by character from left to

right until the stack is empty.

Step 4: If the current character in I is a white space, simply ignore it.

Step 5: If the current character in I is an operand, write it as the next element of

the postfix expression P

Step 6: If the current character in I is a left parenthesis (, push it onto the stack.

Step 7: If the current character in I is an operator , Then

Pop operators (if there is any) at the top of stack while they have equal

or higher precedence than the current operator and put the popped

operators in the postfix expression P.

Push the currently scanned operator on the stack.

Step 8: If the current character in I is a right parenthesis Then

Pop operators from the top of the stack and insert them in the postfix

expression P until a left parenthesis is encountered at the top of the stack.

Pop and discard left parenthesis (from the stack.

Step 9: Exit

Algorithm: Convert an arithmetic expression ‘I’ written in infix

notation into its equivalent postfix expression ‘p’.)

Consider an expression, I = (6 +2) * 8/4

Let us transform this infix expression I into its equivalent postfix expression P

using the algorithm.

I = (6 + 2) * 5 – 8 / 4)

Character

scanned

Status of

Stack

Postfix expression

‘P’

(

(((

6 ((6

+ ((+ 6

2 ((+ 6 2

) (6 2 +

* (* 6 2 +

5 (* 6 2 + 5

- (- 6 2 + 5 *

8 (- 6 2 + 5 * 8

/ (-/ 6 2 + 5 * 8

4 (-/ 6 2 + 5 * 8 4

) Null 6 2 + 5 * 8 4 / -

Algorithm: Evaluate an arithmetic expression ‘P’ written

in postfix notation and calculates the result of the

expression in variable ‘Value’.

Step 1: Scan P from left to right and Repeat steps 2 and 3 for

each scanned character until end of the expression.

Step 2: If scanned character is an operand, push it onto the

stack.

Step 3: If the scanned character is an operator Then

Pop the two top elements a and b from the stack where

a is the top element and b is the next to top element.

Apply the operator on the operands b and a and push

the result onto the stack.

[End loop]

Step 4: Set Value = Stack [Top]

Step 5: Print: “The value of the expression is “: Value

Step 6: Exit

Evaluation of Postfix notation

Consider the previously converted postfix expression P = 6 2 + 5

* 8 4 / - which will be evaluated using algorithm as shown below:

Character Scanned Status of Stack

6 6

2 6 2

+ 8

5 8 5

* 40

8 40 8

4 40 8 4

/ 40 2

- 38

The calculated result i.e. 38 of the expression P is returned.

Evaluation of Postfix notation (continued)

A stack can be used for syntax verification of the arithmetic expression

for ensuring that for each left parenthesis in the expression there is a

corresponding right parenthesis. To accomplish this task of parenthesis

matching, the expression is scanned from left to right character by

character. Whenever a left parenthesis is encountered, we push it onto

the stack. The parenthesis encountered can be of any type, square

brace [, round brace (, or curly brace{.When we encounter a right

parenthesis], or), or}, the status of the stack is checked. If the stack is

empty then we have a right parenthesis in the expression that does not

have the corresponding left parenthesis in the expression showing the

mistake in the expression. If the stack is not empty, we will pop the

topmost element from the stack and compare it with the scanned right

parenthesis. If both the parenthesis are not of the same type then it

shows a mistake in the expression. But, if both the parentheses are of

the same type then the same procedure is repeated until the whole

expression is scanned and stack is empty.

Matching parenthesis

Step 1: Scan the expression I from left to right and Repeat

steps 2 to 4 for each scanned character until the end

of the expression is reached.

Step 2: If the scanned character is left parenthesis then

push it onto the stack.

Step 3: If the scanned character is an operator or operand

then ignore it.

Step 4: If the scanned character is a right parenthesis Then

a) If Stack[Top] = Null Then

Print “There is no left parenthesis corresponding to right

parenthesis”.

Exit

[End If]

Algorithm: Syntax verification by scanning an arithmetic

expression ‘I’ from left to right character by character using

a stack.

b. Pop the top element from the stack and compare it with

currently scanned right parenthesis.

c. If both are not corresponding Then

Print “The braces are not in proper order”.

Exit

[End If]

[End Loop]

Step 5: If Stack [Top] != Null Then

Print: “There is no right parenthesis corresponding to

the left parenthesis”.

Exit

[End If]

Step 6: Exit.

Algorithm (continued)

Let us check the order of braces in an arithmetic expression I using

above algorithm.

I = [(5 + 6) * 7 – {7 / 4} + (3 * 2) – 8]

Character Scanned Status of Stack

[[

([(

) [

{ [{

} [

([(

) [

] Null

Example

Quick Sort

Quick sort is an important application of stack which was

developed by C.A.R Hoare in the year 1962. This sort is also

popular with the names Partition Exchange Sort or Hoare’s

Quick Sort. Before discussing about the quick sort, let us

discuss briefly about general sorting concept .Sorting means, the

arrangement of the elements of the list in some logical order. If

the elements of the list are numeric numbers then sorting refers

to arranging them in increasing or decreasing order. On the other

hand, if the list has alphabetic elements then sorting refers to be

alphabetic increasing or decreasing arrangements of the

elements.

Quick Sort (continued)

Quick sort algorithm which is an important application of stack

uses divide and conquer policy for sorting the list of elements. In

divide and conquer policy, the problem to be solved is divided into

sub- problems repeatedly until we reach the smallest size sub-

problems whose solution is easy to find. Then solution of these

small sub-problems is combined to obtain the solution of the

whole problem.

In quick sort strategy, the problem of sorting the given list of

element is reduced to sorting the smaller subsets. The quick sort

strategy can be better explained by talking an example of a list

having unsorted elements.

Quick Sort (continued)

Consider an unsorted list of 10 elements:

5 8 2 11 1 33 4 3 100 7

5 8 2 11 1 33 4 3 100 7

←

In the first pass of the quick sort algorithm, the first element of

the list will occupy its correct position in the list. In the above list

of numbers, the correct position of the first element in the list will

be found and will be occupied by it. This task will be

accomplished by scanning the list from the right to left starting

from right most position of the list i.e. from element 7. While

scanning the list each element will be compared with the first

element, we will stop the scanning and interchange the first

element with the recently scanned element. Here, in the given list

while scanning the list from right to left the first element 5 will

be interchange with the element as shown below:

Quick Sort (continued)

3 8 2 11 1 33 4 5 100 7

←

Now, starting from first position i.e. from element 3, scan the list

from left to right by comparing each element with 5.This time

meeting an element larger than the element 5, we will stop scanning

the list and Here in the given list, the element 5 will be interchanged

with the element 8 as shown below.

3 5 2 11 1 33 4 8 100 7

←

Now, starting from element 8, scan the list from right to left by

comparing each element with 5.

Meeting an element smaller than the element 5, we stop scanning the

list and interchange the currently scanned element with element 5.

Here in the given list, the element 5 will be interchanged with the

element 4 as shown below:

3 4 2 11 1 33 5 8 100 7

→

Quick Sort (continued)

Now, starting from element 4, scan the list from left to right by

comparing each element with 5. Meeting and interchange the

currently scanned element with 5. Here in the given list, the

element 5 will be interchanged with the element as shown below.

3 4 2 5 1 33 11 8 100 7

←

Now, starting from element 11, scan the element from right to

left by comparing each element with 5. Meeting an element

smaller than the element 5,we stop scanning the list and

interchange the currently scanned element with 5.Here in the

given list, the element 5 will be interchange the element 1 as

shown below.

3 4 2 1 5 33 11 8 100 7

→

Quick Sort (continued)

Now, starting from element 1, scan the list from right to left by

comparing each element with 5. Meeting an element larger than

the element 5, we stop scanning the list and interchange the

element with 5. Here, in the given list, this time there is no

element which is larger than 5. It means the element 5 is at the

correct position in the list and all the elements which are smaller

than 5 are on the left side of the 5 and all the elements which are

larger than 5 are on the right side of the element 5.

3 4 2 1 5 33 11 8 100 7

Left Sublist Right Sublist

Now, the task of sorting is reduced to sorting the two sublists

(left sublist and right sublist).

The same reduction procedure will be repeated on each sublist

having two or more elements. We can process only one sublist

at a time, so we have to postpone the processing of other

sublist. This postponed processing of sublist can be easily

accomplished by sorting the lower and upper indices of each

sublist into the two different stacks. The reduction procedure

will be applied on the sublists after removing their lower and

upper indices from the stacks named Lbstack and Ubstack

respectively.

Quick Sort (continued)

The use of the stack for sorting a linear list ‘L’ having 12 numbers

is explained as follows:

29 35 42 17 39 12 25 54 10 72 19 85

1 2 3 4 5 6 7 8 9 10 11 12

An Unsorted Array ‘L’ of 12 Elements

Initially, the lower bound and lower upper bound of given linear

list will be pushed onto the two different stacks named Lbstack

and Ubstack respectively as shown below:

1 12←Stack Top→

Lbtack Ubstack

Stacks containing the lower bound and Upper Bound of the list

Quick Sort (continued)

Now, the first reduction step will be performed on the list after popping

the indices of the list from both the stacks will become empty.

29 35 42 17 39 12 25 54 10 72 19 85

←

19 35 42 17 39 12 25 54 10 72 29 85

→

19 29 42 17 39 12 25 54 10 72 35 85

←

19 10 42 17 39 12 25 54 29 72 35 85

→

19 10 29 17 39 12 25 54 42 72 35 85

←

19 10 25 17 39 12 29 54 42 72 35 85

→

19 10 25 17 29 12 39 54 42 72 35 85

←

19 10 25 17 12 29 39 54 42 72 35 85

→

Quick Sort (continued)

19 10 25 17 12 39 54 42 72 35 85

1 2 3 4 5

Left Sublist

7 8 9 10 11 12

Right Sublist

29

Two Sublists Created After The First Reduction Step

After the completion of first reduction step, the first element has occupied

the correct position in the list and two sublists have been created as shown

in figure. The lower and upper indices of newly created sublists will be

pushed into the stacks LbStack and UbStack as shown in figure.

7

1

12

5

←Stack Top→

Quick Sort (continued)

Now, the same procedure will be applied on the sublist whose

lower and upper indices will be popped from top of the stacks

LbStack and UbStack respectively. Here, in the example, the

reduction step will be applied on the right sublist first whose lower

and upper indices are 7 and 12 respectively. After the completion

of the reduction step, the element at index number 7 i.e. 39 will

occupy the correct position in the sublist and the sublist will be

divided into two new sublists whose indices will be pushed onto

the stacks. This procedure will be repeated until the whole list is

stored.

Quick Sort (continued)

Algorithm: Sort an array ‘L’ with ‘n’ elements

Quick sort (L, n)

Step 1: Set stacktop =

Step 2: If n > 1 Then

Set stacktop = 1

Set LbStack [stacktop] =1

Set UbStack [stacktop] = n

[End If]

Step 3: Repeat Steps 4 to 7 while stacktop =

Step 4: Set Begin = LbStack [stacktop]

Set End = UbStack [stacktop]

Set stacktop = stacktop – 1

Step 5: Loc = Splitpass (L, Begin, End)

Step 6: If Begin < Loc - 1 Then

Set stactop = stacktop +1

Set Lbstack [stacktop] = Begin

Set UbStack [stacktop] = Loc -1

[End If]

Step 7: If End > Loc + 1 Then

Set stacktop = stacktop + 1

Set LbStack [stacktop] = Loc + 1

Set UbSatck [stacktop] = End

[End If]

[End Loop]

Step 8: Exit

Algorithm (continued)

Algorithm: Put the first element of the sublist ‘L’ passed to it at

its correct position and returns the new location of the first

element.

SplitPass (L, Begin, End)

Step 1: Set Left = Begin, Right = End, Loc = Begin And Flag

=False

Step 2: Repeat steps 3 to 6 While Flag = False

Step 3: Repeat While L [Loc] < =L [Right] And Loc !=Right

Set Right= Right – 1

[End Loop]

Step 4: If Loc = Right Then

Set Flag = True

Else If L[Loc] > L[Right] Then

Interchange L[Loc] and L[Right]

Set Loc = Right

[End If]

Step 5: Repeat While L[Loc] > = L[Left] AND Loc !=Left

Set Left =Left + 1

[End Loop]

Step 6: If Loc = Left Then

Set Flag= True

Else If L[Loc] < L[Left] Then

Interchange L[Loc] and L[Left]

Set Loc = Left

[End If]

[End Loop]

Step 7: Return Loc

Algorithm (continued)

Complexity Analysis of Quick Sort Algorithm

Complexity of a sorting algorithm is represented by function f(n)

i.e. number of comparisons required to sort the list of elements.

While analyzing quick sort algorithm, the worst case occurs when

after each reduction step, the list is portioned into two sublists

with one of them being empty. Such a situation occurs only when

the given lists of elements is already sorted. In this situation, the

1st element will be compared with n - 1 elements to remain at its

original position. After the completion of first reduction step, one

of the two siblists formed will be empty and another will have n -

1 elements. During the second reduction step, 2nd element will be

compared with n- 2 elements to remain at its original position and

so on. So, in the worst case, the total numbers will be:

f(n) = (n-1) + (n-2) + (n-3) + …….+ 3 + 2 + 1= 0(n2)

Complexity Analysis of Quick Sort Algorithm

•The average case occurs while sorting the list, when after each

reduction reduction step of the algorithm; it produces two

sublists of approximately same size. To calculate the average

case complexity of the quick sort algorithm, two assumptions are

to be made.

•The size of the list n should be the power of 2 i.e. n = 2m, for

some positive integer value of m.

•After each reduction step sublists formed are approximately

equal size.

In average case analysis, there will be exactly n - 1 comparisons

during the first reduction step that produces two sublist of size

each. In the second reduction step, there will be approximately

comparisons for each sublists that produces for sublists of size

each.

This procedure will continue until there is n sublists of size 1

each. Here, total number of comparisons f(n) will be:

In the general case, where the size of the list is not in the power

of 2 and sublists formed may not be of equal size, the complexity

can be calculated but the procedure is very complex and is

beyond the scope of this book but in that case the resultant

complexity will be same i.e. O(n log2 n).

Complexity Analysis of Quick Sort Algorithm

Recursion is very important and powerful tool for developing

algorithms for various problems. Recursion is the ability of a

procedure either to call itself or calling to some other procedure

may result in call to the original procedure. In computer science,

solution of many problems can be best defined recursively. Two

very important conditions/ requirements that must be satisfied by

any procedure to be defined recursively are:

• There must be a decision criterion that stops the further call to

the procedure called base criteria.

• Each time a procedure calls itself either directly or indirectly, it

must be nearer to the solution i.e. nearer to the base criteria.

Recursion

A procedure having these two properties is called a well defined

procedure and can be defined recursively. Recursive procedure can

be implemented in various programming languages but compilers

of some programming language are not able to handle recursive

procedure because they do not have stack mechanism required by

the recursive procedures. Programming languages such as

PASCAL, ALGOL, C, C++ can be used to implement recursive

procedure calls.

Recursion (continued)

Examples of some Recursively defined problems

Most of the readers may be familiar with procedure for calculating

the factorial of a positive integer or finding the nth term of a

Fibonacci series. Both of these problems can be defined

recursively.

Factorial Function

The factorial of a posititve number n is the product of positive

integers from 1 to n The Factorial of a number is represented

symbolically by placing a symbol ‘!’ next to it. The factorial of a

positive integer n will be defined as:

The value of the factorial function for zero is taken as 1. Let us

know calculate the factorial of some positive integers.

Recursion (continued)

The factorial for the same numbers can also be defined as:

Thus, the formal definition of the factorial function can be given

as:

This definition of calculating the factorial of a number is recursive

as it meets both the conditions which are required to solve a

problem recursively.

Recursion (continued)

Algorithm: Calculate the value of n! recursively

Factorial (n)

If n = 0 Then

Set Fact = 1

Return

Else

Set Fact =

Return

[End If]

Recursion (continued)

Fibonacci Series

A Fibonacci series is a sequence of numbers which is usually

denoted by F
0,

F
1
, F

2
F

3
,…….,F

n.
The series is as shown below:

0, 1, 2, 3, 5, 8, 13, 21,……

Here, F
0
=0, F

1
=1and F

2
=F

0
+F

1
, F

3
= F

1
+F

2
, F

4
= F

2
+F

3
and so

on.

Generally speaking, in a Fibonacci series, each succeeding term is

a sum of two preceding terms. The recursive procedure for finding

the nth term of the Fibonacci series can be defined as:

Recursion (continued)

Algorithm: Find the nth term of a Fibonacci series recursively.

Fibonacci (n)

If n =0 Then

Set Fibo = 0

Return

Else if n = 1 Then

Set Fibo = 1

Return

Else

Set Fibo = Fibonacci (n – 1) + Fibonacci (n -2)

Return

[End If]

Recursion (continued)

When to use Recursion

Recursion is generally used for repetitive computations in which

each action is defined in terms of previous result.

While making a decision about whether to use recursive procedure

or non- recursive procedure, there is not any hard and fast rule for

the selection. There are many factors that affect the choice of

procedure for solving a given problem:

• Computer Memory Required

• Processing Time Required

• Time Required for developing the Algorithm

• Time Required for Debugging

It is always advisable to consider a tree structure for a given

problem. If the tree structure is simple then use of non-recursive

procedure is suitable. If the tree structure appears quite bushy with

duplication of tasks, then recursive procedure is suitable.

Demerits of recursion
1. Many programming languages do not support recursion. Hence

recursive mathematical function is implemented using interactive

methods.

2. Even though mathematical functions can be easily implemented

using recursion it is always at the cost of execution time and

memory space. For example, the recursion tree for generating 6

numbers in a Fibonacci series generation is given in previous

figure. A Fibonacci series is of the form 0, 1, 2, 3, 5, 8, 13,

…..etc, where a number is the sum of preceding two numbers. It

can be noticed from the figure that, f(n-2) is computed twice, f(n-

3) is computed thrice, f(n-4) is computed 5 times.

3. A recursive procedure can be called from within or outside itself

and to show its proper functioning it has to save the return

addresses in same order so that, a return to the proper location

will result when the return to a calling statement is made.

4. A special care is required to put a stopping condition at which the

recursive function will stop.

Demerits of iterative methods

1. Mathematical functions such as factorial and Fibonacci series

generation can be easily implemented using rather than iteration.

2. In iterative techniques looping of statement is very much

necessary.

Recursion is a top down approach to problem solving. It divides the

problem into pieces or selects one key step postponing the rest.

Iteration is a bottom up approach. It begins with, what is known and

from this constructs the solution step by step. The interactive

function obviously uses time that is O(n) where as recursive function

has an exponential time complexity.

It is always true that recursion can be replaced by iteration and stack.

It is also true that stack can be replaced by a recursive program with

no stack.

